1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221 | """Generative models from an inference API, using the LiteLLM framework."""
import collections.abc as c
import itertools as it
import json
import logging
import os
import random
import re
import typing as t
from functools import cached_property, partial
from time import sleep
import litellm
import ollama
from datasets import DatasetDict
from huggingface_hub import HfApi
from huggingface_hub.errors import (
HFValidationError,
RepositoryNotFoundError,
RevisionNotFoundError,
)
from litellm.exceptions import (
APIConnectionError,
APIError,
AuthenticationError,
BadRequestError,
InternalServerError,
NotFoundError,
RateLimitError,
ServiceUnavailableError,
Timeout,
)
from litellm.llms.vertex_ai.common_utils import VertexAIError
from litellm.types.utils import ChoiceLogprobs, ModelResponse
from requests.exceptions import RequestException
from tqdm.auto import tqdm
from transformers.trainer import Trainer
from ..constants import MAX_LOGPROBS, REASONING_MAX_TOKENS, TASKS_USING_JSON
from ..data_models import (
BenchmarkConfig,
DatasetConfig,
GenerativeModelOutput,
ModelConfig,
Task,
)
from ..enums import (
BatchingPreference,
GenerativeType,
InferenceBackend,
ModelType,
TaskGroup,
)
from ..exceptions import (
InvalidBenchmark,
InvalidModel,
NeedsAdditionalArgument,
NeedsEnvironmentVariable,
NeedsExtraInstalled,
)
from ..task_group_utils import (
question_answering,
sequence_classification,
text_to_text,
token_classification,
)
from ..tokenization_utils import get_first_label_token_mapping
from ..types import ExtractLabelsFunction
from ..utils import create_model_cache_dir, log_once
from .base import BenchmarkModule
from .hf import HuggingFaceEncoderModel, load_hf_model_config, load_tokenizer
logger = logging.getLogger("euroeval")
VOCAB_SIZE_MAPPING = {
# OpenAI models
r"gpt-4-(32k)?(-[0-9]{4})?": 100_256,
r"gpt-4-[0-9]{4}-preview": 100_256,
r"gpt-4-turbo(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": 100_256,
r"gpt-4-(vision|turbo)(-preview)?": 100_256,
r"gpt-3.5-turbo-instruct(-[0-9]{4})?": 100_256,
r"gpt-4o(-mini)?(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": 200_019,
r"o[1-9](-mini|-preview)?(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": -1,
# Anthropic models
r"(anthropic/)?claude-[1-9](-[1-9])?-(opus|sonnet|haiku)-[0-9]{8}": -1,
# Gemini models
r"(gemini/)?gemini-[1-9]\.[0-9]-(flash|pro).*": 256_128,
# xAI models
r"(xai/)?grok.*": -1,
}
MODEL_MAX_LENGTH_MAPPING = {
# OpenAI models
r"gpt-4(-[0-9]{4})?": 8_191,
r"gpt-4-32k(-[0-9]{4})?": 32_767,
r"gpt-4-[0-9]{4}-preview": 128_000,
r"gpt-4-turbo(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": 128_000,
r"gpt-4-(vision|turbo)(-preview)?": 128_000,
r"gpt-3.5-turbo-instruct(-[0-9]{4})?": 4_095,
r"gpt-4o(-mini)?(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": 128_000,
r"o1-(mini|preview)(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": 128_000,
r"o1(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": 200_000,
r"o[2-9](-mini|-preview)?(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": 200_000,
# Anthropic models
r"(anthropic/)?claude-[1-9](-[1-9])?-(opus|sonnet|haiku)-[0-9]{8}": 200_000,
# Gemini models
r"(gemini/)?gemini-1\.5-flash.*": 1_048_576,
r"(gemini/)?gemini-1\.5-pro.*": 2_097_152,
r"(gemini/)?gemini-2\.(0|5).*": 1_048_576,
# xAI models
r"(xai/)?grok.*": 131_072,
}
NUM_PARAMS_MAPPING = {
# OpenAI models
r"gpt-4.*": -1,
r"o[1-9](-mini|-preview)?(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": -1,
# Anthropic models
r"(anthropic/)?claude-*": -1,
# Gemini models
r"(gemini/)?gemini-1.5-flash-8b": 8_000_000_000,
r"(gemini/)?gemini-1.5-flash-[0-9]+": -1,
r"(gemini/)?gemini-2.(0|5).*": -1,
# xAI models
r"(xai/)?grok.*": -1,
}
ALLOWED_PARAMS = {
# OpenAI models
r"gpt-4.*": [],
r"o[1-9](-mini|-preview)?(-[0-9]{4}-[0-9]{2}-[0-9]{2})?": ["low", "high"],
# Anthropic models
r"(anthropic/)?claude-3-.*": [],
r"(anthropic/)?claude-3.5-.*": [],
r"(anthropic/)?claude-3.7-sonnet.*": ["thinking"],
# Gemini models
r"(gemini/)?gemini-.*": [],
# xAI models
r"(xai/)?grok.*": [],
}
REASONING_MODELS = [
r"o[1-9](-mini|-preview)?(-[0-9]{4}-[0-9]{2}-[0-9]{2})?",
r"(gemini/)?gemini.*thinking.*",
r"(gemini/)?gemini-2.5-pro.*",
]
class LiteLLMModel(BenchmarkModule):
"""A generative model from LiteLLM."""
fresh_model = False
batching_preference = BatchingPreference.SINGLE_SAMPLE
high_priority = False
def __init__(
self,
model_config: ModelConfig,
dataset_config: DatasetConfig,
benchmark_config: BenchmarkConfig,
) -> None:
"""Initialise the model.
Args:
model_config:
The model configuration.
dataset_config:
The dataset configuration.
benchmark_config:
The benchmark configuration.
"""
# Detect whether the model is an Ollama model, as we need to extract metadata
# differently for these models
self.is_ollama = model_config.model_id.startswith(
"ollama/"
) or model_config.model_id.startswith("ollama_chat/")
raise_if_wrong_params(model_config=model_config, allowed_params=ALLOWED_PARAMS)
super().__init__(
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
self.buffer["first_label_token_mapping"] = get_first_label_token_mapping(
dataset_config=self.dataset_config, tokenizer=None
)
@property
def generative_type(self) -> GenerativeType | None:
"""Get the generative type of the model.
Returns:
The generative type of the model, or None if it has not been set yet.
"""
if self.model_config.revision == "thinking":
return GenerativeType.REASONING
elif re.fullmatch(
pattern="|".join(REASONING_MODELS), string=self.model_config.model_id
):
return GenerativeType.REASONING
else:
return GenerativeType.INSTRUCTION_TUNED
def generate(self, inputs: dict) -> GenerativeModelOutput:
"""Generate outputs from the model.
Args:
inputs:
A batch of inputs to pass through the model.
Returns:
The generated model outputs.
"""
assert "messages" in inputs, "The input must contain a 'messages' key."
assert len(inputs["messages"]) == 1, (
"API models only support single-sample batching."
)
messages = inputs["messages"][0]
generation_kwargs: dict[str, t.Any] = dict(
model=self.model_config.model_id,
max_completion_tokens=(
REASONING_MAX_TOKENS
if self.generative_type == GenerativeType.REASONING
else self.dataset_config.max_generated_tokens
),
stop=[],
temperature=0.0,
seed=4242,
api_key=self.benchmark_config.api_key,
api_base=self.benchmark_config.api_base,
api_version=self.benchmark_config.api_version,
)
# Get the mapping from labels to the first token in the label. We call this each
# time we generate a new dataset since the dataset config can change
self.buffer["first_label_token_mapping"] = get_first_label_token_mapping(
dataset_config=self.dataset_config, tokenizer=None
)
if self.buffer["first_label_token_mapping"]:
generation_kwargs["logprobs"] = True
generation_kwargs["top_logprobs"] = MAX_LOGPROBS
if self.dataset_config.task in TASKS_USING_JSON:
assert "json" in messages[0]["content"].lower(), (
"Prompt must contain 'json' for JSON tasks."
)
generation_kwargs["response_format"] = dict(type="json_object")
log_once(
"Enabling JSON response format for model "
f"{self.model_config.model_id!r}",
level=logging.DEBUG,
)
if self.model_config.revision == "thinking":
generation_kwargs["thinking"] = dict(
type="enabled", budget_tokens=REASONING_MAX_TOKENS
)
log_once(
f"Enabling thinking mode for model {self.model_config.model_id!r}",
level=logging.DEBUG,
)
elif self.model_config.revision in {"low", "high"}:
generation_kwargs["reasoning_effort"] = self.model_config.revision
log_once(
f"Enabling reasoning effort {self.model_config.revision!r} for model "
f"{self.model_config.model_id!r}",
level=logging.DEBUG,
)
# This drops generation kwargs that are not supported by the model
litellm.drop_params = True
# Extract the generated sequences from the model response. Some APIs cannot
# handle using newlines as stop sequences, so we try both.
num_attempts = 10
for _ in range(num_attempts):
stop_messages = ["stop_sequences"]
logprobs_messages = [
"you are not allowed to request logprobs",
"you've reached the maximum number of requests with logprobs",
"logprobs is not supported",
"logprobs is not enabled",
]
temperature_messages = [
"'temperature' is not supported with this model.",
"temperature is not supported with this model",
]
try:
model_response = litellm.completion(
messages=messages, max_retries=3, **generation_kwargs
)
break
except (BadRequestError, RateLimitError) as e:
if any(msg.lower() in str(e).lower() for msg in stop_messages):
generation_kwargs["stop"] = None
elif (
any(msg.lower() in str(e).lower() for msg in logprobs_messages)
# Special case for Vertex AI models, since they have strict rate
# limits on using logprobs. They also have a cap of 5 logprobs, but
# we ignore this since the rate limiting makes it unusable anyway.
or (isinstance(e, VertexAIError) and "logprobs" in str(e).lower())
):
generation_kwargs.pop("logprobs")
generation_kwargs.pop("top_logprobs")
elif any(msg.lower() in str(e).lower() for msg in temperature_messages):
generation_kwargs.pop("temperature")
elif isinstance(e, RateLimitError):
raise InvalidModel(
"You have encountered your rate limit for model "
f"{self.model_config.model_id!r}. Skipping."
)
else:
raise InvalidBenchmark(
f"Failed to generate text. The error message was: {e}"
)
except APIError as e:
raise InvalidBenchmark(
f"Failed to generate text. The error message was: {e}"
)
except (
APIConnectionError,
Timeout,
ServiceUnavailableError,
InternalServerError,
) as e:
logger.debug(
f"Service temporarily unavailable. The error message was: {e}. "
f"Retrying in 5 seconds..."
)
sleep(5)
except AuthenticationError:
raise NeedsAdditionalArgument(
cli_argument="--api-key",
script_argument="api_key=<your-api-key>",
run_with_cli=self.benchmark_config.run_with_cli,
)
else:
raise InvalidBenchmark(
message=f"Failed to generate text, after {num_attempts} attempts."
)
assert isinstance(model_response, ModelResponse)
if not model_response.choices:
# This happens for reasoning models, when they don't finish thinking and run
# out of tokens. Happens quite rarely, but we need to handle it.
logger.warning(
f"The model {self.model_config.model_id!r} did not end up generating "
"any text. This is likely because the model ran out of tokens while "
"reasoning. Returning an empty string."
)
return GenerativeModelOutput(sequences=[""])
model_response_choices = model_response.choices[0]
assert isinstance(model_response_choices, litellm.Choices)
generation_output = model_response_choices.message["content"] or ""
generation_output = generation_output.strip()
# Structure the model output as a GenerativeModelOutput object
model_output = GenerativeModelOutput(sequences=[generation_output])
if hasattr(model_response_choices, "logprobs"):
logprobs_obj = model_response_choices.logprobs
if isinstance(logprobs_obj, ChoiceLogprobs):
logprobs_list: list[list[tuple[str, float]]] = [
[
(top_logprob.token, top_logprob.logprob)
for top_logprob in content.top_logprobs
]
for content in model_response_choices.logprobs.content or list()
]
model_output.scores = [logprobs_list]
else:
log_once(
"The logprobs object is malformed, so we won't use logprobs to "
"determine the labels.",
level=logging.WARNING,
)
return model_output
@cached_property
def num_params(self) -> int:
"""The number of parameters in the model.
Returns:
The number of parameters in the model.
"""
# Start by trying out the regex mapping, and use the value if it matches
for key, value in NUM_PARAMS_MAPPING.items():
if re.fullmatch(pattern=key, string=self.model_config.model_id) is not None:
return value
# If it is an Ollama model then we can get the number of parameters from the
# Ollama Python SDK
if self.is_ollama:
ollama_model_id = "/".join(self.model_config.model_id.split("/")[1:])
model_info = ollama.show(ollama_model_id).modelinfo
if model_info is not None:
num_params = model_info.get("general.parameter_count")
if num_params is not None:
return int(num_params)
# If it is a model accessed through the Hugging Face inference API then we can
# get the number of parameters from the Hugging Face model configuration from
# the Hugging Face Hub
if self.model_config.model_id.startswith("huggingface/"):
model_id = "/".join(self.model_config.model_id.split(sep="/")[-2:])
if HuggingFaceEncoderModel.model_exists(
model_id=model_id, benchmark_config=self.benchmark_config
):
hf_config = load_hf_model_config(
model_id=model_id,
num_labels=self.dataset_config.num_labels,
id2label=self.dataset_config.id2label,
label2id=self.dataset_config.label2id,
revision="main",
model_cache_dir=self.model_config.model_cache_dir,
api_key=self.benchmark_config.api_key,
trust_remote_code=self.benchmark_config.trust_remote_code,
run_with_cli=self.benchmark_config.run_with_cli,
)
hf_api = HfApi()
try:
repo_info = hf_api.model_info(
repo_id=model_id,
revision="main",
token=os.getenv("HUGGINGFACE_API_KEY")
or self.benchmark_config.api_key
or True,
)
except (
RepositoryNotFoundError,
RevisionNotFoundError,
RequestException,
HFValidationError,
):
repo_info = None
if (
repo_info is not None
and hasattr(repo_info, "safetensors")
and repo_info.safetensors is not None
and "total" in repo_info.safetensors
):
return repo_info.safetensors["total"]
elif (
hasattr(hf_config, "num_params")
and hf_config.num_params is not None
):
return hf_config.num_params
return -1
@cached_property
def vocab_size(self) -> int:
"""The vocabulary size of the model.
Returns:
The vocabulary size of the model.
"""
# Start by trying out the regex mapping, and use the value if it matches
for key, value in VOCAB_SIZE_MAPPING.items():
if re.fullmatch(pattern=key, string=self.model_config.model_id) is not None:
return value
# If it is a model accessed through the Hugging Face inference API then we can
# get the vocabulary size from the Hugging Face model configuration from the
# Hugging Face Hub
if self.model_config.model_id.startswith("huggingface/"):
model_id = "/".join(self.model_config.model_id.split(sep="/")[-2:])
if HuggingFaceEncoderModel.model_exists(
model_id=model_id, benchmark_config=self.benchmark_config
):
hf_config = load_hf_model_config(
model_id=model_id,
num_labels=self.dataset_config.num_labels,
id2label=self.dataset_config.id2label,
label2id=self.dataset_config.label2id,
revision="main",
model_cache_dir=self.model_config.model_cache_dir,
api_key=self.benchmark_config.api_key,
trust_remote_code=self.benchmark_config.trust_remote_code,
run_with_cli=self.benchmark_config.run_with_cli,
)
tokenizer = load_tokenizer(
model=None,
model_id=model_id,
trust_remote_code=self.benchmark_config.trust_remote_code,
)
if (
hasattr(hf_config, "vocab_size")
and hf_config.vocab_size is not None
):
vocab_size = hf_config.vocab_size
elif (
hasattr(tokenizer, "vocab_size")
and tokenizer.vocab_size is not None
):
vocab_size = tokenizer.vocab_size
else:
vocab_size = -1
return vocab_size
return -1
@cached_property
def model_max_length(self) -> int:
"""The maximum length of the model.
Returns:
The maximum length of the model.
"""
# Start by trying out the regex mapping, and use the value if it matches
for key, value in MODEL_MAX_LENGTH_MAPPING.items():
if re.fullmatch(pattern=key, string=self.model_config.model_id) is not None:
return value
# If it is an Ollama model then we can get the maximum length from the Ollama
# Python SDK
if self.is_ollama:
ollama_model_id = "/".join(self.model_config.model_id.split("/")[1:])
model_info = ollama.show(ollama_model_id).modelinfo
if model_info is not None:
context_length_keys = [
key for key in model_info.keys() if "context_length" in key.lower()
]
if context_length_keys:
context_length = model_info[context_length_keys[0]]
if context_length is not None:
log_once(
f"Detected context length key {context_length_keys[0]!r} "
f"for Ollama model {ollama_model_id!r}",
level=logging.DEBUG,
)
return int(context_length)
else:
log_once(
f"Tried to get the maximum length of the Ollama model "
f"{ollama_model_id!r}, but could not find a context length. "
f"The model info was {model_info}. Returning -1",
level=logging.DEBUG,
)
# If it is a model accessed through the Hugging Face inference API then we can
# get the maximum length from the Hugging Face model configuration from the
# Hugging Face Hub
if self.model_config.model_id.startswith("huggingface/"):
model_id = "/".join(self.model_config.model_id.split(sep="/")[-2:])
if HuggingFaceEncoderModel.model_exists(
model_id=model_id, benchmark_config=self.benchmark_config
):
hf_config = load_hf_model_config(
model_id=model_id,
num_labels=self.dataset_config.num_labels,
id2label=self.dataset_config.id2label,
label2id=self.dataset_config.label2id,
revision="main",
model_cache_dir=self.model_config.model_cache_dir,
api_key=self.benchmark_config.api_key,
trust_remote_code=self.benchmark_config.trust_remote_code,
run_with_cli=self.benchmark_config.run_with_cli,
)
tokenizer = load_tokenizer(
model=None,
model_id=model_id,
trust_remote_code=self.benchmark_config.trust_remote_code,
)
all_max_lengths: list[int] = list()
# Add the registered max length of the tokenizer
if hasattr(
tokenizer, "model_max_length"
) and tokenizer.model_max_length < int(1e30):
all_max_lengths.append(tokenizer.model_max_length)
# Add the max length derived from the model's input sizes
if hasattr(tokenizer, "max_model_input_sizes"):
all_max_lengths.extend(
[
size
for size in tokenizer.max_model_input_sizes.values()
if size is not None
]
)
# Add max length candidates from the model's configuration
candidate_config_max_lengths = [
"max_position_embeddings",
"max_sequence_length",
"model_max_length",
"sliding_window",
"sliding_window_size",
"n_positions",
]
for candidate_config_max_length in candidate_config_max_lengths:
if (
hasattr(hf_config, candidate_config_max_length)
and (value := getattr(hf_config, candidate_config_max_length))
is not None
):
all_max_lengths.append(value)
# To avoid models having artificially low max lengths, we remove any max
# lengths that are less than 128
all_max_lengths = [
max_length for max_length in all_max_lengths if max_length >= 128
]
if len(list(all_max_lengths)) > 0:
return min(list(all_max_lengths))
return -1
@property
def data_collator(self) -> c.Callable[[list[t.Any]], dict[str, t.Any]]:
"""The data collator used to prepare samples during finetuning.
Returns:
The data collator.
"""
raise NotImplementedError(
"The `data_collator` property has not been implemented for LiteLLM models."
)
@property
def extract_labels_from_generation(self) -> ExtractLabelsFunction:
"""The function used to extract the labels from the generated output.
Returns:
The function used to extract the labels from the generated output.
"""
match self.dataset_config.task.task_group:
case (
TaskGroup.SEQUENCE_CLASSIFICATION
| TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION
):
return partial(
sequence_classification.extract_labels_from_generation,
dataset_config=self.dataset_config,
first_label_token_mapping=self.buffer["first_label_token_mapping"],
)
case TaskGroup.TEXT_TO_TEXT:
return text_to_text.extract_labels_from_generation
case TaskGroup.TOKEN_CLASSIFICATION:
return partial(
token_classification.extract_labels_from_generation,
dataset_config=self.dataset_config,
)
case TaskGroup.QUESTION_ANSWERING:
return question_answering.extract_labels_from_generation
case _:
raise NotImplementedError(
f"Unsupported task group: {self.dataset_config.task.task_group}."
)
@property
def trainer_class(self) -> t.Type["Trainer"]:
"""The Trainer class to use for finetuning.
Returns:
The Trainer class.
"""
raise NotImplementedError(
"The `trainer_class` property has not been implemented for LiteLLM models."
)
@classmethod
def model_exists(
cls, model_id: str, benchmark_config: BenchmarkConfig
) -> bool | NeedsExtraInstalled | NeedsEnvironmentVariable:
"""Check if a model exists.
Args:
model_id:
The model ID.
benchmark_config:
The benchmark configuration.
Returns:
Whether the model exists, or an error describing why we cannot check
whether the model exists.
"""
model_id, _ = model_id.split("@") if "@" in model_id else (model_id, "main")
if model_id in litellm.model_list:
return True
# Separate check for Ollama models
if model_id.startswith("ollama/") or model_id.startswith("ollama_chat/"):
ollama_model_exists = try_download_ollama_model(model_id=model_id)
if ollama_model_exists:
return ollama_model_exists
num_attempts = 10
for _ in range(num_attempts):
try:
litellm.completion(
messages=[dict(role="user", content="X")],
model=model_id,
max_tokens=1,
api_key=benchmark_config.api_key,
api_base=benchmark_config.api_base,
api_version=benchmark_config.api_version,
)
return True
# A rate limit indicates that the model *does* exist, but we are being rate
# limited.
except RateLimitError:
return True
except (
APIConnectionError,
Timeout,
ServiceUnavailableError,
InternalServerError,
) as e:
logger.debug(
f"Service temporarily unavailable. The error message was: {e}. "
"Retrying in 10 seconds..."
)
sleep(5)
except APIError as e:
if "'503 Service Unavailable" not in str(e):
raise e
logger.warning(
f"Failed to check if model {model_id!r} exists. Retrying in 10 "
"seconds..."
)
sleep(10)
except (BadRequestError, NotFoundError):
candidate_models = [
candidate_model_id
for candidate_model_id in litellm.model_list
if candidate_model_id.startswith(model_id)
]
match len(candidate_models):
case 0:
pass
case 1:
logger.warning(
f"Could not find the model ID {model_id!r}. Did you mean "
f"{candidate_models[0]!r}?"
)
case _:
candidate_models_str = "', '".join(candidate_models)
logger.warning(
f"Could not find the model ID {model_id!r}. Did you mean "
f"any of the following model IDs: '{candidate_models_str}'?"
)
return False
else:
logger.error(
f"Failed to check if model {model_id!r} exists after {num_attempts} "
"attempts. Assuming it does not exist."
)
return False
@classmethod
def get_model_config(
cls, model_id: str, benchmark_config: BenchmarkConfig
) -> ModelConfig:
"""Fetch the model configuration.
Args:
model_id:
The model ID.
benchmark_config:
The benchmark configuration.
Returns:
The model configuration.
"""
model_id, revision = model_id.split("@") if "@" in model_id else (model_id, "")
return ModelConfig(
model_id=model_id,
revision=revision,
task="text-generation",
languages=list(),
merge=False,
inference_backend=InferenceBackend.LITELLM,
model_type=ModelType.GENERATIVE,
fresh=False,
model_cache_dir=create_model_cache_dir(
cache_dir=benchmark_config.cache_dir, model_id=model_id
),
adapter_base_model_id=None,
)
def prepare_dataset(
self, dataset: DatasetDict, task: Task, itr_idx: int
) -> DatasetDict:
"""Prepare the dataset for the model.
This includes things like tokenisation.
Args:
dataset:
The dataset to prepare.
task:
The task to prepare the dataset for.
itr_idx:
The index of the dataset in the iterator.
Returns:
The prepared dataset.
"""
if task.task_group == TaskGroup.QUESTION_ANSWERING:
dataset = dataset.map(
lambda examples: dict(
label=[
dict(
id=id,
answers=dict(
answer_start=answer_dct["answer_start"],
text=[
answer_text.lower()
for answer_text in answer_dct["text"]
],
),
)
for id, answer_dct in zip(examples["id"], examples["answers"])
]
),
batched=True,
load_from_cache_file=False,
keep_in_memory=True,
)
if self.benchmark_config.few_shot:
few_shot_examples = self._extract_few_shot_examples(
dataset=dataset, task=task, itr_idx=itr_idx
)
else:
few_shot_examples = list()
dataset["test"] = dataset["test"].map(
partial(self._apply_prompt, few_shot_examples=few_shot_examples, task=task),
batched=True,
load_from_cache_file=False,
keep_in_memory=True,
)
return dataset
def _extract_few_shot_examples(
self, dataset: DatasetDict, task: Task, itr_idx: int
) -> list[dict[str, t.Any]]:
"""Extract few-shot examples from a dataset.
This will always extract the examples from the training split.
We ensure that the few-shot examples are unique by picking them one at a time.
Args:
dataset:
The dataset to extract the few-shot examples from.
task:
The task that is being benchmarked.
itr_idx:
The index of the dataset in the iterator.
Returns:
The few-shot examples.
"""
random_seed = 4242 + itr_idx
num_few_shots = self.dataset_config.num_few_shot_examples
few_shot_examples: list[dict[str, t.Any]] = list()
shuffled_train = dataset["train"].shuffle(seed=random_seed)
match task.task_group:
case (
TaskGroup.SEQUENCE_CLASSIFICATION
| TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION
):
labels = it.cycle(self.dataset_config.labels)
while (
len(few_shot_examples) < num_few_shots and len(shuffled_train) > 0
):
label = next(labels)
possible_examples = shuffled_train.filter(
lambda x: x["label"].lower() == label.lower()
)
if len(possible_examples) == 0:
continue
example = possible_examples.select(range(1))[0]
few_shot_examples.append(example)
shuffled_train = shuffled_train.filter(
lambda x: x["text"] != example["text"]
)
case TaskGroup.TEXT_TO_TEXT:
while (
len(few_shot_examples) < num_few_shots and len(shuffled_train) > 0
):
example = shuffled_train.select(range(1))[0]
few_shot_examples.append(example)
shuffled_train = shuffled_train.filter(
lambda x: x["text"] != example["text"]
)
case TaskGroup.TOKEN_CLASSIFICATION:
labels = it.cycle(
[
label.lower()
for label in self.dataset_config.labels
if label.lower().startswith("b-")
]
)
while (
len(few_shot_examples) < num_few_shots and len(shuffled_train) > 0
):
label = next(labels)
possible_examples = shuffled_train.filter(
lambda x: label in [tag.lower() for tag in x["labels"]]
)
if len(possible_examples) == 0:
continue
example = possible_examples.select(range(1))[0]
few_shot_examples.append(example)
shuffled_train = shuffled_train.filter(
lambda x: x["tokens"] != example["tokens"]
)
case TaskGroup.QUESTION_ANSWERING:
# Locate the maximum number of tokens that constitutes a short example
for max_num_tokens in [512, 1024, 2048, 4096, 8192]:
train_with_short_examples = dataset["train"].filter(
lambda example: len(example["context"]) < max_num_tokens
)
num_short_examples = len(train_with_short_examples)
if num_short_examples >= self.dataset_config.num_few_shot_examples:
break
else:
raise InvalidBenchmark(
"Could not find enough short examples for few-shot learning."
)
shuffled_train = train_with_short_examples.shuffle(seed=random_seed)
while (
len(few_shot_examples) < num_few_shots and len(shuffled_train) > 0
):
example = shuffled_train.select(range(1))[0]
few_shot_examples.append(example)
shuffled_train = shuffled_train.filter(
lambda x: x["context"] != example["context"]
)
case _:
raise NotImplementedError(f"Unsupported task group: {task.task_group}.")
random.seed(random_seed)
random.shuffle(few_shot_examples)
return few_shot_examples
def _apply_prompt(
self,
examples: dict[str, t.Any],
few_shot_examples: list[dict[str, t.Any]],
task: Task,
) -> dict[str, t.Any]:
"""Apply prompt template to an example, potentially with few-shot examples.
Args:
examples:
The examples to apply the few-shot examples to.
few_shot_examples:
The few-shot examples to apply.
task:
The task that is being benchmarked.
Returns:
The example with the few-shot examples applied.
"""
def create_prompt(**kwargs: str) -> tuple[str, str]:
"""Create a prompt from the given keyword arguments.
Args:
kwargs:
The keyword arguments to use in the prompt.
Returns:
A pair (prompt, label), where "label" is an empty string if the model is
not instruction tuned (as in this case it is included in the prompt).
"""
label_key = "label" if "label" in kwargs else "target_text"
label = kwargs.pop(label_key)
label_mapping = self.dataset_config.prompt_label_mapping
label = label_mapping.get(label, label)
prompt = self.dataset_config.instruction_prompt.format(**kwargs)
return prompt, label
match task.task_group:
case (
TaskGroup.SEQUENCE_CLASSIFICATION
| TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION
):
few_shot_sections = [
create_prompt(
text=example["text"].replace("\n", " ").strip(),
label=example["label"].replace("\n", " ").strip(),
)
for example in few_shot_examples
]
new_sections = [
create_prompt(text=text.replace("\n", " ").strip(), label="")
for text in examples["text"]
]
case TaskGroup.TEXT_TO_TEXT:
few_shot_sections = [
create_prompt(
text=example["text"].replace("\n", " ").strip(),
target_text=example["target_text"].replace("\n", " ").strip(),
)
for example in few_shot_examples
]
new_sections = [
create_prompt(text=text.replace("\n", " ").strip(), target_text="")
for text in examples["text"]
]
case TaskGroup.TOKEN_CLASSIFICATION:
def create_label(example: dict) -> str:
prompt_labels = self.dataset_config.prompt_label_mapping.values()
labels: dict[str, list[str]] = {
prompt_label: list() for prompt_label in prompt_labels
}
for token, label in zip(example["tokens"], example["labels"]):
label = label.lower()
if label == "o":
continue
prompt_label = self.dataset_config.prompt_label_mapping[label]
if label.startswith("b-"):
labels[prompt_label].append(token)
elif label.startswith("i-"):
labels[prompt_label][-1] += " " + token
return json.dumps(labels, ensure_ascii=False)
few_shot_sections = [
create_prompt(
text=" ".join(example["tokens"]).replace("\n", " ").strip(),
label=create_label(example=example),
)
for example in few_shot_examples
]
new_sections = [
create_prompt(
text=" ".join(tokens).replace("\n", " ").strip(), label=""
)
for tokens in examples["tokens"]
]
case TaskGroup.QUESTION_ANSWERING:
few_shot_sections = [
create_prompt(
text=example["context"].replace("\n", " ").strip(),
question=example["question"].replace("\n", " ").strip(),
label=example["answers"]["text"][0].replace("\n", " "),
)
for example in few_shot_examples
]
new_sections = [
create_prompt(
text=context.replace("\n", " ").strip(),
question=question.replace("\n", " ").strip(),
label="",
)
for context, question in zip(
examples["context"], examples["question"]
)
]
case _:
raise NotImplementedError(f"Unsupported task group: {task.task_group}.")
few_shot_messages = [
dict(role=role, content=content)
for prompt, label in few_shot_sections
for role, content in [("user", prompt), ("assistant", label)]
]
messages_list = [
few_shot_messages + [dict(role="user", content=prompt)]
for prompt, _ in new_sections
]
examples["messages"] = messages_list
return examples
def raise_if_wrong_params(
model_config: ModelConfig, allowed_params: dict[str, list[str]]
) -> None:
"""Raise an error if the model configuration has invalid parameters.
Args:
model_config:
The model configuration.
allowed_params:
The allowed parameters for the model.
Raises:
InvalidModel:
If the model configuration has invalid parameters.
"""
param = model_config.revision
if param == "":
return
for model_regex, allowed_params_list in allowed_params.items():
if re.fullmatch(pattern=model_regex, string=model_config.model_id):
if param not in allowed_params_list:
msg = (
f"Invalid parameter {param!r} for model {model_config.model_id!r}."
)
if allowed_params_list:
msg += f" Allowed parameters are: {', '.join(allowed_params_list)}."
else:
msg += " No parameters are allowed."
raise InvalidModel(msg)
return
def try_download_ollama_model(model_id: str) -> bool:
"""Try to download an Ollama model.
Args:
model_id:
The model ID. If the model does not start with "ollama/" or "ollama_chat/"
then this function will return False.
Returns:
Whether the model was downloaded successfully.
"""
if not (model_id.startswith("ollama/") or model_id.startswith("ollama_chat/")):
return False
if model_id.startswith("ollama/"):
log_once(
"You're trying to benchmark a model with the old 'ollama/' prefix, which "
"probably results in bad performance, as it doesn't use the model's chat "
"template. If the model is not a chat model then just disregard this "
"warning, but if it is a chat model then please cancel this run and "
"use the 'ollama_chat/' prefix instead.",
level=logging.WARNING,
)
downloaded_ollama_models: list[str] = [
model_obj.model
for model_obj in ollama.list().models
if model_obj.model is not None
]
ollama_model_id = "/".join(model_id.split("/")[1:])
if ollama_model_id not in downloaded_ollama_models:
# Try fetching the model info
try:
response = ollama.pull(model=ollama_model_id, stream=True)
except ollama.ResponseError as e:
if "file does not exist" in str(e).lower():
# Check if the model exists if we prepend "hf.co/"
try:
ollama_model_id_with_prefix = f"hf.co/{ollama_model_id}"
model_id_with_prefix = (
f"{model_id.split('/')[0]}/{ollama_model_id_with_prefix}"
)
ollama.pull(model=ollama_model_id_with_prefix, stream=True)
log_once(
f"The model {model_id!r} cannot be found on Ollama, but the "
f"model {model_id_with_prefix} *was* found, so we would "
"recommend you cancelling this run and trying the evaluation "
"with that model ID instead."
)
return False
except ollama.ResponseError as inner_e:
if "file does not exist" in str(inner_e).lower():
return False
else:
raise InvalidModel(
f"Failed to download Ollama model {ollama_model_id}. "
f"The error message was: {inner_e}"
)
else:
raise InvalidModel(
f"Failed to download Ollama model {ollama_model_id}. "
f"The error message was: {e}"
)
# Download the model
with tqdm(
desc=f"Downloading {ollama_model_id}",
unit_scale=True,
unit="B",
leave=False,
) as pbar:
for status in response:
if status.total is not None:
pbar.total = status.total
if status.completed is not None:
pbar.update(status.completed - pbar.n)
return True
else:
log_once(
f"Ollama model {ollama_model_id!r} already downloaded, so skipping "
"download.",
level=logging.DEBUG,
)
return True
|