Skip to content

euroeval.utils

docs module euroeval.utils

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
"""Utility functions to be used in other scripts."""

import asyncio
import gc
import importlib
import importlib.metadata
import importlib.util
import logging
import os
import random
import sys
import typing as t
import warnings
from functools import cache
from pathlib import Path

import litellm
import numpy as np
import requests
import torch
from datasets.utils import disable_progress_bar
from requests.exceptions import RequestException
from transformers import logging as tf_logging

from .exceptions import NaNValueInModelOutput

if importlib.util.find_spec("ray") is not None:
    import ray

if t.TYPE_CHECKING:
    from types import TracebackType

    from .types import Predictions


logger = logging.getLogger("euroeval")


def create_model_cache_dir(cache_dir: str, model_id: str) -> str:
    """Create cache directory for a model.

    Args:
        cache_dir:
            The cache directory.
        model_id:
            The model ID.

    Returns:
        The path to the cache directory.
    """
    # to avoid nesting due to models name containing '/'
    _model_id = model_id.replace("/", "--")
    cache_dir_path = Path(cache_dir) / "model_cache" / _model_id
    return str(cache_dir_path)


def clear_memory() -> None:
    """Clears the memory of unused items."""
    for gc_generation in range(3):
        gc.collect(generation=gc_generation)
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
    if torch.backends.mps.is_available():
        torch.mps.empty_cache()


def enforce_reproducibility(seed: int = 4242) -> np.random.Generator:
    """Ensures reproducibility of experiments.

    Args:
        seed:
            Seed for the random number generator.
    """
    random.seed(seed)
    np.random.seed(seed)
    rng = np.random.default_rng(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
    os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
    torch.backends.cudnn.benchmark = False
    torch.backends.cudnn.deterministic = True
    torch.use_deterministic_algorithms(True, warn_only=True)
    return rng


def block_terminal_output() -> None:
    """Blocks libraries from writing output to the terminal.

    This filters warnings from some libraries, sets the logging level to ERROR for some
    libraries, disabled tokeniser progress bars when using Hugging Face tokenisers, and
    disables most of the logging from the `transformers` library.
    """
    # Ignore miscellaneous warnings
    warnings.filterwarnings("ignore", category=UserWarning)
    warnings.filterwarnings("ignore", category=FutureWarning)
    warnings.filterwarnings(
        "ignore",
        module="torch.nn.parallel*",
        message="Was asked to gather along dimension 0, but all input tensors were "
        "scalars; will instead unsqueeze and return a vector.",
    )
    warnings.filterwarnings("ignore", module="seqeval*")

    # Up the logging level, to disable outputs
    logging.getLogger("filelock").setLevel(logging.CRITICAL)
    logging.getLogger("absl").setLevel(logging.CRITICAL)
    logging.getLogger("datasets").setLevel(logging.CRITICAL)
    logging.getLogger("openai").setLevel(logging.CRITICAL)
    logging.getLogger("torch.distributed.distributed_c10d").setLevel(logging.CRITICAL)
    logging.getLogger("torch.nn.parallel.distributed").setLevel(logging.CRITICAL)
    logging.getLogger("vllm").setLevel(logging.CRITICAL)
    logging.getLogger("vllm.engine.llm_engine").setLevel(logging.CRITICAL)
    logging.getLogger("vllm.transformers_utils.tokenizer").setLevel(logging.CRITICAL)
    logging.getLogger("vllm.core.scheduler").setLevel(logging.CRITICAL)
    logging.getLogger("vllm.model_executor.weight_utils").setLevel(logging.CRITICAL)
    logging.getLogger("vllm.platforms").setLevel(logging.CRITICAL)
    logging.getLogger("httpx").setLevel(logging.CRITICAL)
    logging.getLogger("ray._private.worker").setLevel(logging.CRITICAL)
    logging.getLogger("ray._private.services").setLevel(logging.CRITICAL)
    logging.getLogger("matplotlib.font_manager").setLevel(logging.CRITICAL)
    logging.getLogger("accelerate").setLevel(logging.CRITICAL)
    logging.getLogger("LiteLLM").setLevel(logging.CRITICAL)
    logging.getLogger("huggingface_hub").setLevel(logging.CRITICAL)

    # This suppresses vLLM logging
    os.environ["LOG_LEVEL"] = "CRITICAL"
    os.environ["VLLM_CONFIGURE_LOGGING"] = "0"

    if importlib.util.find_spec("ray") is not None:
        ray._private.worker._worker_logs_enabled = False

    # Disable the tokeniser progress bars
    disable_progress_bar()

    # Disable most of the `transformers` logging
    tf_logging._default_log_level = logging.CRITICAL
    tf_logging.set_verbosity(logging.CRITICAL)
    logging.getLogger("transformers.trainer").setLevel(logging.CRITICAL)

    # Disable logging from `litellm`
    litellm.suppress_debug_info = True


def get_class_by_name(class_name: str | list[str], module_name: str) -> t.Type | None:
    """Get a class by its name.

    Args:
        class_name:
            The name of the class, written in kebab-case. The corresponding class name
            must be the same, but written in PascalCase, and lying in a module with the
            same name, but written in snake_case. If a list of strings is passed, the
            first class that is found is returned.
        module_name:
            The name of the module where the class is located.

    Returns:
        The class. If the class is not found, None is returned.
    """
    if isinstance(class_name, str):
        class_name = [class_name]

    error_messages = list()
    for name in class_name:
        try:
            module = importlib.import_module(name=module_name)
            class_: t.Type = getattr(module, name)
            return class_
        except (ModuleNotFoundError, AttributeError) as e:
            error_messages.append(str(e))

    if error_messages:
        errors = "\n- " + "\n- ".join(error_messages)
        logger.debug(
            f"Could not find the class with the name(s) {', '.join(class_name)}. The "
            f"following error messages were raised: {errors}"
        )

    # If the class could not be found, return None
    return None


def get_min_cuda_compute_capability() -> float | None:
    """Gets the lowest cuda capability.

    Returns:
        Device capability as float, or None if CUDA is not available.
    """
    if not torch.cuda.is_available():
        return None

    device_range = range(torch.cuda.device_count())
    capabilities = map(torch.cuda.get_device_capability, device_range)
    major, minor = min(capabilities)
    return float(f"{major}.{minor}")


def internet_connection_available() -> bool:
    """Checks if internet connection is available by pinging google.com.

    Returns:
        Whether or not internet connection is available.
    """
    try:
        requests.get("https://www.google.com")
        return True
    except RequestException:
        return False


class HiddenPrints:
    """Context manager which removes all terminal output."""

    def __enter__(self) -> None:
        """Enter the context manager."""
        self._original_stdout = sys.stdout
        self._original_stderr = sys.stderr
        sys.stdout = open(os.devnull, "w")
        sys.stderr = open(os.devnull, "w")

    def __exit__(
        self,
        exc_type: t.Type[BaseException],
        exc_val: BaseException,
        exc_tb: "TracebackType",
    ) -> None:
        """Exit the context manager."""
        sys.stdout.close()
        sys.stderr.close()
        sys.stdout = self._original_stdout
        sys.stderr = self._original_stderr


def raise_if_model_output_contains_nan_values(model_output: "Predictions") -> None:
    """Raise an exception if the model output contains NaN values.

    Args:
        model_output:
            The model output to check.

    Raises:
        If the model output contains NaN values.
    """
    if isinstance(model_output, np.ndarray):
        if model_output.dtype == np.float32 and np.isnan(model_output).any():
            raise NaNValueInModelOutput()
    elif len(model_output) > 0:
        if isinstance(model_output[0], str):
            if any(x != x for x in model_output):
                raise NaNValueInModelOutput()
        elif len(model_output[0]) > 0:
            if any(x != x for sublist in model_output for x in sublist):
                raise NaNValueInModelOutput()


def scramble(text: str) -> str:
    """Scramble a string in a bijective manner.

    Args:
        text:
            The string to scramble.

    Returns:
        The scrambled string.
    """
    rng = np.random.default_rng(seed=4242)
    permutation = rng.permutation(x=len(text))
    scrambled = "".join(text[i] for i in permutation)
    return scrambled


def unscramble(scrambled_text: str) -> str:
    """Unscramble a string in a bijective manner.

    Args:
        scrambled_text:
            The scrambled string to unscramble.

    Returns:
        The unscrambled string.
    """
    rng = np.random.default_rng(seed=4242)
    permutation = rng.permutation(x=len(scrambled_text))
    inverse_permutation = np.argsort(permutation)
    unscrambled = "".join(scrambled_text[i] for i in inverse_permutation)
    return unscrambled


@cache
def log_once(message: str, level: int = logging.INFO) -> None:
    """Log a message once.

    This is ensured by caching the input/output pairs of this function, using the
    `functools.cache` decorator.

    Args:
        message:
            The message to log.
        level:
            The logging level. Defaults to logging.INFO.
    """
    match level:
        case logging.DEBUG:
            logger.debug(message)
        case logging.INFO:
            logger.info(message)
        case logging.WARNING:
            logger.warning(message)
        case logging.ERROR:
            logger.error(message)
        case logging.CRITICAL:
            logger.critical(message)
        case _:
            raise ValueError(f"Invalid logging level: {level}")


def get_package_version(package_name: str) -> str | None:
    """Get the version of a package.

    Args:
        package_name:
            The name of the package.

    Returns:
        The version of the package, or None if the package is not installed.
    """
    try:
        return importlib.metadata.version(package_name)
    except importlib.metadata.PackageNotFoundError:
        return None


T = t.TypeVar("T", bound=object)


def safe_run(coroutine: t.Coroutine[t.Any, t.Any, T]) -> T:
    """Run a coroutine, ensuring that the event loop is always closed when we're done.

    Args:
        coroutine:
            The coroutine to run.

    Returns:
        The result of the coroutine.
    """
    loop = asyncio.new_event_loop()
    try:
        asyncio.set_event_loop(loop)
        return loop.run_until_complete(coroutine)
    finally:
        loop.close()
        asyncio.set_event_loop(None)


async def catch_coroutine_exception(
    coroutine: t.Coroutine[t.Any, t.Any, T],
) -> T | Exception:
    """Run a coroutine, catching any exceptions and returning them.

    Args:
        coroutine:
            The coroutine to run.

    Returns:
        The result of the coroutine, or the exception if it was raised.
    """
    try:
        return await coroutine
    except Exception as exc:
        return exc