Skip to content

euroeval.types

[docs] module euroeval.types

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
"""Types used throughout the project."""

import typing as t

from transformers.trainer_utils import EvalPrediction

if t.TYPE_CHECKING:
    from datasets.arrow_dataset import Dataset
    from numpy.typing import NDArray

    from .data_models import GenerativeModelOutput


ScoreDict: t.TypeAlias = dict[str, dict[str, float] | list[dict[str, float]]]
Predictions: t.TypeAlias = "NDArray | list[str] | list[list[str]]"
Labels: t.TypeAlias = "NDArray | list[str] | list[list[str]]"


class ComputeMetricsFunction(t.Protocol):
    """A function used to compute the metrics."""

    def __call__(
        self,
        model_outputs_and_labels: EvalPrediction
        | tuple[
            "NDArray | list[str] | list[list[str]]",
            "NDArray | list[str] | list[list[str]]",
        ],
        dataset: "Dataset",
    ) -> dict[str, float]:
        """Compute the metrics.

        Args:
            model_outputs_and_labels:
                The model outputs and labels.
            dataset:
                The dataset used for evaluation. This is only used in case any
                additional metadata is used to compute the metrics.

        Returns:
            The computed metrics.
        """
        ...


class ExtractLabelsFunction(t.Protocol):
    """A function used to extract the labels from the generated output."""

    def __call__(
        self, input_batch: dict[str, list], model_output: "GenerativeModelOutput"
    ) -> list[str]:
        """Extract the labels from the generated output.

        Args:
            input_batch:
                The input batch.
            model_output:
                The model output.

        Returns:
            The extracted labels.
        """
        ...


def is_list_of_int(x: object) -> t.TypeGuard[list[int]]:
    """Check if an object is a list of integers.

    Args:
        x:
            The object to check.

    Returns:
        Whether the object is a list of integers.
    """
    return isinstance(x, list) and all(isinstance(i, int) for i in x)


def is_list_of_list_of_int(x: object) -> t.TypeGuard[list[list[int]]]:
    """Check if an object is a list of list of integers.

    Args:
        x:
            The object to check.

    Returns:
        Whether the object is a list of list of integers.
    """
    return (
        isinstance(x, list)
        and all(isinstance(i, list) for i in x)
        and all(isinstance(j, int) for i in x for j in i)
    )


def is_list_of_str(x: object) -> t.TypeGuard[list[str]]:
    """Check if an object is a list of integers.

    Args:
        x:
            The object to check.

    Returns:
        Whether the object is a list of strings.
    """
    return isinstance(x, list) and all(isinstance(i, str) for i in x)