Skip to content

euroeval.metrics

[docs] module euroeval.metrics

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
"""All the metrics used in EuroEval."""

import abc
import logging
import typing as t

import evaluate
import litellm
from litellm.types.utils import Choices, ModelResponse
from pydantic import BaseModel, Field
from tqdm.auto import tqdm

from .exceptions import InvalidBenchmark
from .utils import HiddenPrints

if t.TYPE_CHECKING:
    from evaluate import EvaluationModule

logger = logging.getLogger(__name__)


class Metric(abc.ABC):
    """Abstract base class for all metrics."""

    def __init__(
        self,
        name: str,
        pretty_name: str,
        postprocessing_fn: t.Callable[[float], tuple[float, str]] | None = None,
    ) -> None:
        """Initialise the metric.

        Args:
            name:
                The name of the metric in snake_case.
            pretty_name:
                The pretty name of the metric, used for display purposes.
            postprocessing_fn:
                A function to apply to the metric scores after they are computed,
                taking the score to the postprocessed score along with its string
                representation. Defaults to x -> (100 * x, f"{x:.2%}").
        """
        self.name = name
        self.pretty_name = pretty_name
        self.postprocessing_fn = (
            postprocessing_fn
            if postprocessing_fn is not None
            else lambda x: (100 * x, f"{x:.2%}")
        )

    @abc.abstractmethod
    def __call__(self, predictions: t.Sequence, references: t.Sequence) -> float | None:
        """Calculate the metric score.

        Args:
            predictions:
                The model predictions.
            references:
                The ground truth references.

        Returns:
            The calculated metric score, or None if the score should be ignored.
        """
        ...

    def __hash__(self) -> int:
        """Return a hash of the metric configuration."""
        return hash(self.name)


class HuggingFaceMetric(Metric):
    """A metric which is implemented in the `evaluate` package.

    Attributes:
        name:
            The name of the metric in snake_case.
        pretty_name:
            The pretty name of the metric, used for display purposes.
        huggingface_id:
            The Hugging Face ID of the metric.
        results_key:
            The name of the key used to extract the metric scores from the results
            dictionary.
        compute_kwargs:
            Keyword arguments to pass to the metric's compute function. Defaults to
            an empty dictionary.
    """

    def __init__(
        self,
        name: str,
        pretty_name: str,
        huggingface_id: str,
        results_key: str,
        compute_kwargs: dict[str, t.Any] | None = None,
        postprocessing_fn: t.Callable[[float], tuple[float, str]] | None = None,
    ) -> None:
        """Initialise the Hugging Face metric.

        Args:
            name:
                The name of the metric in snake_case.
            pretty_name:
                The pretty name of the metric, used for display purposes.
            huggingface_id:
                The Hugging Face ID of the metric.
            results_key:
                The name of the key used to extract the metric scores from the results
                dictionary.
            compute_kwargs:
                Keyword arguments to pass to the metric's compute function. Defaults to
                an empty dictionary.
            postprocessing_fn:
                A function to apply to the metric scores after they are computed, taking
                the score to the postprocessed score along with its string
                representation. Defaults to x -> (100 * x, f"{x:.2%}").
        """
        super().__init__(
            name=name, pretty_name=pretty_name, postprocessing_fn=postprocessing_fn
        )
        self.huggingface_id = huggingface_id
        self.results_key = results_key
        self.compute_kwargs: dict[str, t.Any] = (
            dict() if compute_kwargs is None else compute_kwargs
        )
        self.metric: "EvaluationModule | None" = None

    def __call__(self, predictions: t.Sequence, references: t.Sequence) -> float | None:
        """Calculate the metric score.

        Args:
            predictions:
                The model predictions.
            references:
                The ground truth references.

        Returns:
            The calculated metric score, or None if the score should be ignored.
        """
        if self.metric is None:
            self.metric = evaluate.load(path=self.huggingface_id)

        with HiddenPrints():
            results = self.metric.compute(
                predictions=predictions, references=references, **self.compute_kwargs
            )

        # The metric returns None if we are running on multi-GPU and the current
        # process is not the main process
        if results is None:
            return None

        score = results[self.results_key]
        if isinstance(score, list):
            score = sum(score) / len(score)

        return score


class LLMAsAJudgeMetric(Metric):
    """Use an LLM to judge the quality of the predictions."""

    def __init__(
        self,
        name: str,
        pretty_name: str,
        judge_id: str,
        judge_kwargs: dict[str, t.Any],
        user_prompt: str,
        response_format: t.Type[BaseModel],
        scoring_fn: t.Callable[[BaseModel], float],
        condition_formatting_fn: t.Callable[[str], str] = lambda x: x,
        system_prompt: str | None = None,
    ) -> None:
        """Initialise the LLM as a judge metric.

        Args:
            name:
                The name of the metric in snake_case.
            pretty_name:
                The pretty name of the metric, used for display purposes.
            judge_id:
                The model ID of the LLM to use as a judge.
            judge_kwargs:
                Generation parameters for the judge model, such as temperature.
            user_prompt:
                The user prompt to use for the judge model. The prompt should be
                formatted with the variables `prediction` and `condition`, to
                include the model predictions and a description of what the prediction
                should be judged on, respectively. If the condition is not needed,
                it can be omitted from the prompt, but the `prediction` variable must
                still be present.
            response_format:
                The response format to use for the judge model. This should be a
                Pydantic model that defines the expected structure of the judge's
                response.
            scoring_fn:
                A function that takes the judge's response and returns a score.
            condition_formatting_fn (optional):
                A function to format the condition string before it is included in the
                user prompt. Defaults to a no-op function that returns the input
                unchanged.
            system_prompt (optional):
                The system prompt to use for the judge model. If not provided, no system
                prompt will be used.
        """
        super().__init__(name=name, pretty_name=pretty_name)
        self.judge_id = judge_id
        self.judge_kwargs = judge_kwargs
        self.user_prompt = user_prompt
        self.response_format = response_format
        self.scoring_fn = scoring_fn
        self.condition_formatting_fn = condition_formatting_fn
        self.system_prompt = system_prompt

    def __call__(self, predictions: t.Sequence, references: t.Sequence) -> float | None:
        """Calculate the metric score using the judge model.

        Args:
            predictions:
                The model predictions.
            references:
                The ground truth references.

        Returns:
            The calculated metric score, or None if the score should be ignored.

        Raises:
            InvalidBenchmark:
                If the number of predictions does not match the number of references,
                or if the user prompt requires a condition but none is provided.
        """
        if not predictions or not references:
            return None
        elif len(predictions) != len(references):
            raise InvalidBenchmark(
                f"The number of predictions ({len(predictions):,}) does not match the "
                f"number of references ({len(references):,})."
            )

        # Prepare the messages for the LLM
        conversations: list[list[dict[str, str]]] = [
            [
                dict(
                    role="user",
                    content=self._apply_user_prompt(
                        prediction=prediction, condition=condition
                    ),
                )
            ]
            for prediction, condition in zip(predictions, references)
        ]
        if self.system_prompt:
            conversations = [
                [dict(role="system", content=self.system_prompt), *conversation]
                for conversation in conversations
            ]

        # Get the judge generations
        generations = [
            litellm.completion(
                model=self.judge_id,
                messages=conversation,
                response_format=self.response_format,
                **self.judge_kwargs,
            )
            for conversation in tqdm(
                iterable=conversations,
                desc=f"Computing {self.pretty_name} scores",
                unit="sample",
            )
        ]

        # Extract the outputs from the generations
        outputs: list[BaseModel] = list()
        for generation in generations:
            assert isinstance(generation, ModelResponse), (
                f"The judge model did not return a valid response: {generation!r}"
            )
            choice = generation.choices[0]
            assert isinstance(choice, Choices), (
                f"The judge model did not return a valid choice: {choice!r}"
            )
            json_content = choice.message.content
            assert json_content is not None, (
                "The judge model returned a None content in the response message."
            )
            output = self.response_format.model_validate_json(json_data=json_content)
            outputs.append(output)

        # Calculate the scores using the scoring function
        scores = [self.scoring_fn(output) for output in outputs]
        if not scores:
            logger.warning(f"No scores were calculated for {self.pretty_name}.")
            return None
        return sum(scores) / len(scores)

    def _apply_user_prompt(self, prediction: str, condition: str | None = None) -> str:
        """Apply the user prompt to the prediction and condition.

        Args:
            prediction:
                The model prediction.
            condition (optional):
                A description of what the prediction should be judged on. If not
                provided, it will be omitted from the prompt.

        Returns:
            The formatted user prompt with the prediction and reference.

        Raises:
            InvalidBenchmark:
                If the user prompt requires a reference but none is provided.
        """
        condition_required = "{condition}" in self.user_prompt
        if condition_required and condition is None:
            raise InvalidBenchmark(
                f"The user prompt for the {self.pretty_name!r} metric requires a "
                "condition, but none was provided."
            )
        if condition is not None:
            return self.user_prompt.format(
                prediction=prediction, condition=self.condition_formatting_fn(condition)
            )
        return self.user_prompt.format(prediction=prediction)


class SpeedMetric(Metric):
    """Speed metric."""

    def __init__(self, name: str, pretty_name: str) -> None:
        """Initialise the speed metric.

        Args:
            name:
                The name of the metric in snake_case.
            pretty_name:
                The pretty name of the metric, used for display purposes.
        """
        super().__init__(
            name=name,
            pretty_name=pretty_name,
            postprocessing_fn=lambda raw_score: (raw_score, f"{raw_score:,.0f}"),
        )

    def __call__(self, _: t.Sequence, __: t.Sequence) -> float | None:
        """Not used with the speed metric, but required for consistency."""
        raise NotImplementedError


mcc_metric = HuggingFaceMetric(
    name="mcc",
    pretty_name="Matthew's Correlation Coefficient",
    huggingface_id="matthews_correlation",
    results_key="matthews_correlation",
)

macro_f1_metric = HuggingFaceMetric(
    name="macro_f1",
    pretty_name="Macro-average F1-score",
    huggingface_id="f1",
    results_key="f1",
    compute_kwargs=dict(average="macro"),
)

micro_f1_metric = HuggingFaceMetric(
    name="micro_f1",
    pretty_name="Micro-average F1-score with MISC tags",
    huggingface_id="seqeval",
    results_key="overall_f1",
)

micro_f1_no_misc_metric = HuggingFaceMetric(
    name="micro_f1_no_misc",
    pretty_name="Micro-average F1-score without MISC tags",
    huggingface_id="seqeval",
    results_key="overall_f1",
)

f1_metric = HuggingFaceMetric(
    name="f1",
    pretty_name="F1-score",
    huggingface_id="squad_v2",
    results_key="f1",
    postprocessing_fn=lambda x: (x, f"{x:.2f}%"),
)

em_metric = HuggingFaceMetric(
    name="em",
    pretty_name="Exact Match",
    huggingface_id="squad_v2",
    results_key="exact",
    postprocessing_fn=lambda x: (x, f"{x:.2f}%"),
)

bert_score_metric = HuggingFaceMetric(
    name="bertscore",
    pretty_name="BERTScore",
    huggingface_id="bertscore",
    results_key="f1",
    compute_kwargs=dict(
        model_type="microsoft/mdeberta-v3-base", device="auto", batch_size=1
    ),
)

rouge_l_metric = HuggingFaceMetric(
    name="rouge_l", pretty_name="ROUGE-L", huggingface_id="rouge", results_key="rougeL"
)

accuracy_metric = HuggingFaceMetric(
    name="accuracy",
    pretty_name="Accuracy",
    huggingface_id="accuracy",
    results_key="accuracy",
)


class Fluency(BaseModel):
    """Response format for the fluency metric.

    Attributes:
        fluency:
            The fluency rating, an integer between 1 and 5.
    """

    fluency: t.Annotated[int, Field(ge=1, le=5)]


# Example LLM-as-a-judge metric, to measure the fluency of the LLM output
fluency_metric = LLMAsAJudgeMetric(
    name="fluency",
    pretty_name="Fluency",
    judge_id="gpt-4o-mini",
    judge_kwargs=dict(temperature=0.0),
    user_prompt="Please rate the fluency of the following text on a scale from 1 to 5, "
    "with the following definitions:\n"
    "- 1: Very poor fluency, many grammatical errors\n"
    "- 2: Poor fluency, several grammatical errors\n"
    "- 3: Average fluency, a few grammatical errors\n"
    "- 4: Good fluency, no grammatical errors but sounds a bit off\n"
    "- 5: Excellent fluency, no grammatical errors and sounds natural\n\n"
    "Text: {prediction!r}\n\n"
    "Output your rating as a JSON object with a single key 'fluency'.",
    response_format=Fluency,
    scoring_fn=lambda output: (output.fluency - 1) / 4.0,
)

speed_metric = SpeedMetric(name="speed", pretty_name="Tokens per second")

speed_short_metric = SpeedMetric(
    name="speed_short", pretty_name="Tokens per second on short documents"
)