1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141 | """Functions related to the loading of the data."""
import logging
import sys
import time
import typing as t
import requests
from datasets import DatasetDict, load_dataset
from datasets.exceptions import DatasetsError
from huggingface_hub.errors import HfHubHTTPError
from numpy.random import Generator
from .exceptions import HuggingFaceHubDown, InvalidBenchmark
from .tasks import EUROPEAN_VALUES
from .utils import unscramble
if t.TYPE_CHECKING:
from datasets import Dataset
from .data_models import BenchmarkConfig, DatasetConfig
logger = logging.getLogger("euroeval")
def load_data(
rng: Generator, dataset_config: "DatasetConfig", benchmark_config: "BenchmarkConfig"
) -> list["DatasetDict"]:
"""Load the raw bootstrapped datasets.
Args:
rng:
The random number generator to use.
dataset_config:
The configuration for the dataset.
benchmark_config:
The configuration for the benchmark.
Returns:
A list of bootstrapped datasets, one for each iteration.
Raises:
InvalidBenchmark:
If the dataset cannot be loaded.
HuggingFaceHubDown:
If the Hugging Face Hub is down.
"""
dataset = load_raw_data(
dataset_config=dataset_config, cache_dir=benchmark_config.cache_dir
)
if not benchmark_config.evaluate_test_split and "val" in dataset:
dataset["test"] = dataset["val"]
# Remove empty examples from the datasets
for text_feature in ["tokens", "text"]:
for split in dataset_config.splits:
if text_feature in dataset[split].features:
dataset = dataset.filter(lambda x: len(x[text_feature]) > 0)
# If we are testing then truncate the test set, unless we need the full set for
# evaluation
if hasattr(sys, "_called_from_test") and dataset_config.task != EUROPEAN_VALUES:
dataset["test"] = dataset["test"].select(range(1))
# Bootstrap the splits, if applicable
if dataset_config.bootstrap_samples:
bootstrapped_splits: dict[str, list["Dataset"]] = dict()
for split in dataset_config.splits:
bootstrap_indices = rng.integers(
0,
len(dataset[split]),
size=(benchmark_config.num_iterations, len(dataset[split])),
)
bootstrapped_splits[split] = [
dataset[split].select(bootstrap_indices[idx])
for idx in range(benchmark_config.num_iterations)
]
datasets = [
DatasetDict(
{
split: bootstrapped_splits[split][idx]
for split in dataset_config.splits
}
)
for idx in range(benchmark_config.num_iterations)
]
else:
datasets = [dataset] * benchmark_config.num_iterations
return datasets
def load_raw_data(dataset_config: "DatasetConfig", cache_dir: str) -> "DatasetDict":
"""Load the raw dataset.
Args:
dataset_config:
The configuration for the dataset.
cache_dir:
The directory to cache the dataset.
Returns:
The dataset.
"""
num_attempts = 5
for _ in range(num_attempts):
try:
dataset = load_dataset(
path=dataset_config.huggingface_id,
cache_dir=cache_dir,
token=unscramble("HjccJFhIozVymqXDVqTUTXKvYhZMTbfIjMxG_"),
)
break
except (
FileNotFoundError,
ConnectionError,
DatasetsError,
requests.ConnectionError,
requests.ReadTimeout,
):
logger.debug(
f"Failed to load dataset {dataset_config.huggingface_id!r}. Retrying..."
)
time.sleep(1)
continue
except HfHubHTTPError:
raise HuggingFaceHubDown()
else:
raise InvalidBenchmark(
f"Failed to load dataset {dataset_config.huggingface_id!r} after "
f"{num_attempts} attempts."
)
assert isinstance(dataset, DatasetDict) # type: ignore[used-before-def]
missing_keys = [key for key in dataset_config.splits if key not in dataset]
if missing_keys:
raise InvalidBenchmark(
"The dataset is missing the following required splits: "
f"{', '.join(missing_keys)}"
)
return DatasetDict({key: dataset[key] for key in dataset_config.splits})
|