1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185 | """Encoder models from the Hugging Face Hub."""
import collections.abc as c
import logging
import os
import typing as t
from functools import cached_property, partial
from json import JSONDecodeError
from pathlib import Path
from time import sleep
import torch
from datasets import DatasetDict
from huggingface_hub import HfApi
from huggingface_hub import whoami as hf_whoami
from huggingface_hub.hf_api import ModelInfo as HfApiModelInfo
from huggingface_hub.hf_api import RepositoryNotFoundError, RevisionNotFoundError
from huggingface_hub.utils import (
GatedRepoError,
HFValidationError,
LocalTokenNotFoundError,
)
from requests.exceptions import RequestException
from torch import nn
from transformers import (
AutoConfig,
AutoTokenizer,
BatchEncoding,
DataCollatorForTokenClassification,
DataCollatorWithPadding,
PretrainedConfig,
PreTrainedModel,
PreTrainedTokenizer,
Trainer,
)
from transformers.modelcard import TASK_MAPPING
from urllib3.exceptions import RequestError
from ..constants import (
DUMMY_FILL_VALUE,
GENERATIVE_PIPELINE_TAGS,
LOCAL_MODELS_REQUIRED_FILES,
MERGE_TAGS,
)
from ..data_models import BenchmarkConfig, DatasetConfig, HFModelInfo, ModelConfig, Task
from ..enums import (
BatchingPreference,
GenerativeType,
InferenceBackend,
ModelType,
TaskGroup,
)
from ..exceptions import (
HuggingFaceHubDown,
InvalidBenchmark,
InvalidModel,
NeedsAdditionalArgument,
NeedsEnvironmentVariable,
NeedsExtraInstalled,
NoInternetConnection,
)
from ..languages import get_all_languages
from ..task_utils import (
multiple_choice_classification,
question_answering,
token_classification,
)
from ..types import ExtractLabelsFunction
from ..utils import (
block_terminal_output,
create_model_cache_dir,
get_bos_token,
get_class_by_name,
get_eos_token,
internet_connection_available,
)
from .base import BenchmarkModule
logger = logging.getLogger("euroeval")
class HuggingFaceEncoderModel(BenchmarkModule):
"""An encoder model from the Hugging Face Hub."""
fresh_model = False
batching_preference = BatchingPreference.NO_PREFERENCE
high_priority = True
def __init__(
self,
model_config: ModelConfig,
dataset_config: DatasetConfig,
benchmark_config: BenchmarkConfig,
) -> None:
"""Initialise the model.
Args:
model_config:
The model configuration.
dataset_config:
The dataset configuration.
benchmark_config:
The benchmark configuration.
"""
model, tokenizer = load_model_and_tokenizer(
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
self._model: PreTrainedModel = model
self._tokenizer: PreTrainedTokenizer = tokenizer
self._model, self._tokenizer = align_model_and_tokenizer(
model=self._model,
tokenizer=self._tokenizer,
model_max_length=self.model_max_length,
raise_errors=benchmark_config.raise_errors,
)
super().__init__(
model_config=model_config,
dataset_config=dataset_config,
benchmark_config=benchmark_config,
)
@cached_property
def num_params(self) -> int:
"""The number of parameters in the model.
Returns:
The number of parameters in the model.
"""
token = (
self.benchmark_config.api_key or os.getenv("HUGGINGFACE_API_KEY") or True
)
hf_api = HfApi(token=token)
try:
repo_info = hf_api.model_info(
repo_id=self.model_config.adapter_base_model_id
or self.model_config.model_id,
revision=self.model_config.revision,
)
except (
RepositoryNotFoundError,
RevisionNotFoundError,
RequestException,
HFValidationError,
):
repo_info = None
if (
repo_info is not None
and hasattr(repo_info, "safetensors")
and repo_info.safetensors is not None
and "total" in repo_info.safetensors
):
num_params = repo_info.safetensors["total"]
elif (
hasattr(self._model.config, "num_params")
and self._model.config.num_params is not None
):
num_params = self._model.config.num_params
elif hasattr(self._model, "parameters"):
num_params = sum(p.numel() for p in self._model.parameters())
else:
logger.warning(
"The number of parameters could not be determined for the model, since "
"the model is not stored in the safetensors format. If this is your "
"own model, then you can use this Hugging Face Space to convert your "
"model to the safetensors format: "
"https://huggingface.co/spaces/safetensors/convert."
)
num_params = -1
return num_params
@cached_property
def vocab_size(self) -> int:
"""The vocabulary size of the model.
Returns:
The vocabulary size of the model.
"""
if (
hasattr(self._model.config, "vocab_size")
and self._model.config.vocab_size is not None
):
vocab_size = self._model.config.vocab_size
elif (
hasattr(self._tokenizer, "vocab_size")
and self._tokenizer.vocab_size is not None
):
vocab_size = self._tokenizer.vocab_size
else:
vocab_size = -1
return vocab_size
@cached_property
def model_max_length(self) -> int:
"""The maximum context length of the model.
Returns:
The maximum context length of the model.
"""
all_max_lengths: list[int] = list()
# Add the registered max length of the tokenizer
if hasattr(
self._tokenizer, "model_max_length"
) and self._tokenizer.model_max_length < int(1e30):
all_max_lengths.append(self._tokenizer.model_max_length)
# Add the max length derived from the model's input sizes
if hasattr(self._tokenizer, "max_model_input_sizes"):
all_max_lengths.extend(
[
size
for size in self._tokenizer.max_model_input_sizes.values()
if size is not None
]
)
# Add max length candidates from the model's configuration
candidate_config_max_lengths = [
"max_position_embeddings",
"max_sequence_length",
"model_max_length",
"sliding_window",
"sliding_window_size",
"n_positions",
]
for candidate_config_max_length in candidate_config_max_lengths:
if (
hasattr(self._model.config, candidate_config_max_length)
and (value := getattr(self._model.config, candidate_config_max_length))
is not None
):
all_max_lengths.append(value)
# To avoid models having artificially low max lengths, we remove any max lengths
# that are less than 128
all_max_lengths = [
max_length for max_length in all_max_lengths if max_length >= 128
]
if len(list(all_max_lengths)) > 0:
model_max_length = min(list(all_max_lengths))
else:
model_max_length = -1
return model_max_length
@property
def data_collator(self) -> c.Callable[[list[t.Any]], dict[str, t.Any]]:
"""The data collator used to prepare samples during finetuning.
Returns:
The data collator.
"""
match self.dataset_config.task.task_group:
case (
TaskGroup.SEQUENCE_CLASSIFICATION
| TaskGroup.TEXT_TO_TEXT
| TaskGroup.QUESTION_ANSWERING
| TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION
):
return DataCollatorWithPadding(self._tokenizer, padding="longest")
case TaskGroup.TOKEN_CLASSIFICATION:
return DataCollatorForTokenClassification(
tokenizer=self._tokenizer, label_pad_token_id=-100
)
case _:
raise NotImplementedError(
f"Unsupported task group: {self.dataset_config.task.task_group}."
)
@property
def generative_type(self) -> GenerativeType | None:
"""Get the generative type of the model.
Returns:
The generative type of the model, or None if it has not been set yet.
"""
return None
@property
def extract_labels_from_generation(self) -> ExtractLabelsFunction:
"""The function used to extract the labels from the generated output.
Returns:
The function used to extract the labels from the generated output.
"""
raise NotImplementedError(
"The `extract_labels_from_generation` property has not been implemented "
"for Hugging Face Encoder models."
)
@property
def trainer_class(self) -> t.Type["Trainer"]:
"""The Trainer class to use for finetuning.
Returns:
The Trainer class.
"""
match self.dataset_config.task.task_group:
case (
TaskGroup.SEQUENCE_CLASSIFICATION
| TaskGroup.TEXT_TO_TEXT
| TaskGroup.TOKEN_CLASSIFICATION
):
return Trainer
case TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION:
return (
multiple_choice_classification.MultipleChoiceClassificationTrainer
)
case TaskGroup.QUESTION_ANSWERING:
return question_answering.QuestionAnsweringTrainer
case _:
raise NotImplementedError(
f"Unsupported task group: {self.dataset_config.task.task_group}."
)
def prepare_dataset(
self, dataset: DatasetDict, task: Task, itr_idx: int
) -> DatasetDict:
"""Prepare the dataset for the model.
This includes things like tokenisation.
Args:
dataset:
The dataset to prepare.
task:
The task to prepare the dataset for.
itr_idx:
The index of the dataset in the iterator.
Returns:
The prepared dataset.
"""
def numericalise_labels(examples: dict) -> dict:
if "label" in examples:
try:
examples["label"] = [
self._model.config.label2id[lbl.lower()]
for lbl in examples["label"]
]
except KeyError:
raise InvalidBenchmark(
f"One of the labels in the dataset, "
f"{examples['label'].lower()}, does not occur in the "
f"label2id dictionary {self._model.config.label2id}."
)
return examples
def tokenise(examples: dict) -> BatchEncoding:
return self._tokenizer(text=examples["text"], truncation=True, padding=True)
match task.task_group:
case TaskGroup.SEQUENCE_CLASSIFICATION:
dataset = dataset.map(
numericalise_labels, batched=True, load_from_cache_file=False
).map(tokenise, batched=True, load_from_cache_file=False)
case TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION:
dataset = DatasetDict(
train=dataset["train"].map(
partial(
multiple_choice_classification.prepare_examples,
tokenizer=self._tokenizer,
),
batched=True,
batch_size=1,
remove_columns=dataset["train"].column_names,
load_from_cache_file=False,
keep_in_memory=True,
),
val=dataset["val"].map(
partial(
multiple_choice_classification.prepare_examples,
tokenizer=self._tokenizer,
),
batched=True,
batch_size=1,
remove_columns=dataset["val"].column_names,
load_from_cache_file=False,
keep_in_memory=True,
),
test=dataset["test"].map(
partial(
multiple_choice_classification.prepare_examples,
tokenizer=self._tokenizer,
),
batched=True,
batch_size=1,
remove_columns=dataset["test"].column_names,
load_from_cache_file=False,
keep_in_memory=True,
),
)
case TaskGroup.TEXT_TO_TEXT:
dataset = dataset.map(
tokenise,
batched=True,
load_from_cache_file=False,
keep_in_memory=True,
)
case TaskGroup.TOKEN_CLASSIFICATION:
dataset = dataset.map(
partial(
token_classification.tokenize_and_align_labels,
tokenizer=self._tokenizer,
label2id=self._model.config.label2id,
),
batched=True,
load_from_cache_file=False,
keep_in_memory=True,
)
case TaskGroup.QUESTION_ANSWERING:
dataset = DatasetDict(
dict(
train=dataset["train"].map(
partial(
question_answering.prepare_train_examples,
tokenizer=self._tokenizer,
),
batched=True,
batch_size=10,
remove_columns=dataset["test"].column_names,
load_from_cache_file=False,
keep_in_memory=True,
),
val=dataset["val"].map(
partial(
question_answering.prepare_train_examples,
tokenizer=self._tokenizer,
),
batched=True,
batch_size=10,
remove_columns=dataset["test"].column_names,
load_from_cache_file=False,
keep_in_memory=True,
),
test=dataset["test"].map(
partial(
question_answering.prepare_test_examples,
tokenizer=self._tokenizer,
),
batched=True,
batch_size=10,
remove_columns=dataset["test"].column_names,
load_from_cache_file=False,
keep_in_memory=True,
),
)
)
# The Trainer hides the columns that are not used by the model (here
# `id` and `offset_mapping` which we will need for our post-processing),
# so we put them back
for split_name, split in dataset.items():
dataset[split_name].set_format(
type=split.format["type"], columns=list(split.features.keys())
)
case _:
raise NotImplementedError(f"Unsupported task group: {task.task_group}.")
return dataset
@classmethod
def model_exists(
cls, model_id: str, benchmark_config: BenchmarkConfig
) -> bool | NeedsExtraInstalled | NeedsEnvironmentVariable:
"""Check if a model exists.
Args:
model_id:
The model ID.
benchmark_config:
The benchmark configuration.
Returns:
Whether the model exists, or an error describing why we cannot check
whether the model exists.
"""
model_id, revision = (
model_id.split("@") if "@" in model_id else (model_id, "main")
)
model_info = get_model_repo_info(
model_id=model_id, revision=revision, benchmark_config=benchmark_config
)
return (
model_info is not None
and model_info.pipeline_tag not in GENERATIVE_PIPELINE_TAGS
)
@classmethod
def get_model_config(
cls, model_id: str, benchmark_config: BenchmarkConfig
) -> ModelConfig:
"""Fetch the model configuration.
Args:
model_id:
The model ID.
benchmark_config:
The benchmark configuration.
Returns:
The model configuration.
"""
model_id, revision = (
model_id.split("@") if "@" in model_id else (model_id, "main")
)
model_info = get_model_repo_info(
model_id=model_id, revision=revision, benchmark_config=benchmark_config
)
if model_info is None:
raise InvalidModel(f"The model {model_id!r} could not be found.")
language_mapping = get_all_languages()
language_codes = list(language_mapping.keys())
model_config = ModelConfig(
model_id=model_id,
revision=revision,
task=model_info.pipeline_tag,
languages=[
language_mapping[tag]
for tag in model_info.tags
if tag in language_codes
],
merge=any(tag in model_info.tags for tag in MERGE_TAGS),
inference_backend=InferenceBackend.TRANSFORMERS,
model_type=ModelType.ENCODER,
fresh=False,
model_cache_dir=create_model_cache_dir(
cache_dir=benchmark_config.cache_dir, model_id=model_id
),
adapter_base_model_id=None,
)
return model_config
def load_model_and_tokenizer(
model_config: ModelConfig,
dataset_config: DatasetConfig,
benchmark_config: BenchmarkConfig,
) -> tuple[PreTrainedModel, PreTrainedTokenizer]:
"""Load the model and tokenizer.
Args:
model_config:
The model configuration.
dataset_config:
The dataset configuration.
benchmark_config:
The benchmark configuration
Returns:
The loaded model and tokenizer.
"""
config: "PretrainedConfig"
block_terminal_output()
model_id = model_config.model_id
task_group = dataset_config.task.task_group
ignore_mismatched_sizes = False
# Special case where there is a mismatch between the labels during training and
# testing
if dataset_config.task.task_group == TaskGroup.MULTIPLE_CHOICE_CLASSIFICATION:
id2label = {0: "0", 1: "1"}
else:
id2label = dataset_config.id2label
config = load_hf_model_config(
model_id=model_id,
num_labels=len(id2label),
id2label=id2label,
label2id={label: idx for idx, label in id2label.items()},
revision=model_config.revision,
model_cache_dir=model_config.model_cache_dir,
api_key=benchmark_config.api_key,
trust_remote_code=benchmark_config.trust_remote_code,
run_with_cli=benchmark_config.run_with_cli,
)
model_kwargs = dict(
config=config,
ignore_mismatched_sizes=ignore_mismatched_sizes,
revision=model_config.revision,
token=benchmark_config.api_key or os.getenv("HUGGINGFACE_API_KEY") or True,
cache_dir=model_config.model_cache_dir,
trust_remote_code=benchmark_config.trust_remote_code,
torch_dtype=get_torch_dtype(
device=benchmark_config.device,
torch_dtype_is_set=config.to_dict().get("torch_dtype") is not None,
bf16_available=(
torch.cuda.is_available() and torch.cuda.is_bf16_supported()
),
),
)
# These are used when a timeout occurs
attempts_left = 5
model: PreTrainedModel | None = None
while True:
# Get the model class associated with the task group
model_cls_or_none: t.Type["PreTrainedModel"] | None = get_class_by_name(
class_name=task_group_to_class_name(task_group=task_group),
module_name="transformers",
)
# If the model class could not be found then raise an error
if not model_cls_or_none:
raise InvalidBenchmark(
f"The task group {task_group.value!r} does not correspond to a "
"Hugging Face AutoModel type (such as "
"`AutoModelForSequenceClassification`)."
)
# If the model is a DeBERTaV2 model then we ensure that
# `pooler_hidden_size` is the same size as `hidden_size`
if config.model_type == "deberta-v2":
config.pooler_hidden_size = config.hidden_size
try:
model_or_tuple = model_cls_or_none.from_pretrained(
model_config.model_id, **model_kwargs
)
break
except (KeyError, RuntimeError) as e:
if not model_kwargs["ignore_mismatched_sizes"]:
logger.debug(
f"{type(e).__name__} occurred during the loading "
f"of the {model_id!r} model. Retrying with "
"`ignore_mismatched_sizes` set to True."
)
model_kwargs["ignore_mismatched_sizes"] = True
continue
else:
raise InvalidModel(str(e))
except (TimeoutError, RequestError):
attempts_left -= 1
if attempts_left == 0:
raise InvalidModel("The model could not be loaded after 5 attempts.")
logger.info(f"Couldn't load the model {model_id!r}. Retrying.")
sleep(5)
continue
except (OSError, ValueError) as e:
if "checkpoint seems to be incorrect" in str(e):
raise InvalidModel(
f"The model {model_id!r} has an incorrect checkpoint."
)
if "trust_remote_code" in str(e):
raise InvalidModel(
f"Loading the model {model_id!r} needs to trust remote code. "
"If you trust the suppliers of this model, then you can enable "
"this by setting the `--trust-remote-code` flag."
)
raise InvalidModel(
f"The model {model_id!r} could not be loaded. The error was {e!r}."
)
if isinstance(model_or_tuple, tuple):
model = model_or_tuple[0]
else:
model = model_or_tuple
assert model is not None, "The model should not be None."
model.eval()
model.to(benchmark_config.device)
if (
isinstance(model, PreTrainedModel)
and task_group == TaskGroup.QUESTION_ANSWERING
):
model = setup_model_for_question_answering(model=model)
tokenizer = load_tokenizer(
model=model,
model_id=model_id,
trust_remote_code=benchmark_config.trust_remote_code,
)
return model, tokenizer
def get_model_repo_info(
model_id: str, revision: str, benchmark_config: BenchmarkConfig
) -> HFModelInfo | None:
"""Get the information about the model from the HF Hub or a local directory.
Args:
model_id:
The model ID.
revision:
The revision of the model.
benchmark_config:
The benchmark configuration.
Returns:
The information about the model, or None if the model could not be found.
"""
token = benchmark_config.api_key or os.getenv("HUGGINGFACE_API_KEY") or True
hf_api = HfApi(token=token)
model_id, revision = model_id.split("@") if "@" in model_id else (model_id, "main")
# Get information on the model.
# The first case is when the model is a local model, in which case we create a dummy
# model info object.
model_info: HfApiModelInfo | None = None
if Path(model_id).is_dir():
logger.debug(f"Checking for local model in {model_id}.")
if all(
(Path(model_id) / required_file).exists()
for required_file in LOCAL_MODELS_REQUIRED_FILES
):
model_info = HfApiModelInfo(id=model_id, tags=None, pipeline_tag=None)
# If the model does not exist locally, then we get the model info from the Hugging
# Face Hub
if model_info is None:
try:
model_info = hf_api.model_info(
repo_id=model_id, revision=revision, token=token
)
except (GatedRepoError, LocalTokenNotFoundError) as e:
try:
hf_whoami(token=token)
logger.warning(
f"Could not access the model {model_id} with the revision "
f"{revision}. The error was {str(e)!r}."
)
return None
except LocalTokenNotFoundError:
raise NeedsAdditionalArgument(
cli_argument="--api-key",
script_argument="api_key=<your-api-key>",
run_with_cli=benchmark_config.run_with_cli,
)
except (RepositoryNotFoundError, HFValidationError):
return None
except (OSError, RequestException):
if internet_connection_available():
raise HuggingFaceHubDown()
else:
raise NoInternetConnection()
# Get all the Hugging Face repository tags for the model. If the model is an adapter
# model, then we also get the tags for the base model
tags = model_info.tags or list()
has_base_model_tag = any(
tag.startswith("base_model:") and tag.count(":") == 1 for tag in tags
)
base_model_id: str | None = None
if has_base_model_tag:
has_adapter_config = model_info.siblings is not None and any(
sibling.rfilename == "adapter_config.json"
for sibling in model_info.siblings
)
if has_adapter_config:
base_model_id = [
tag.split(":")[1]
for tag in tags
if tag.startswith("base_model:") and tag.count(":") == 1
][0]
base_model_info = hf_api.model_info(
repo_id=base_model_id,
revision=revision,
token=benchmark_config.api_key
or os.getenv("HUGGINGFACE_API_KEY")
or True,
)
tags += base_model_info.tags or list()
tags = list(set(tags))
# Get the pipeline tag for the model. If it is not specified, then we determine it
# by checking the model's architecture as written in the model's Hugging Face config
pipeline_tag = model_info.pipeline_tag
if pipeline_tag is None:
hf_config = load_hf_model_config(
model_id=model_id,
num_labels=0,
id2label=dict(),
label2id=dict(),
revision=revision,
model_cache_dir=create_model_cache_dir(
cache_dir=benchmark_config.cache_dir, model_id=model_id
),
api_key=benchmark_config.api_key,
trust_remote_code=benchmark_config.trust_remote_code,
run_with_cli=benchmark_config.run_with_cli,
)
class_names = hf_config.architectures
generative_class_names = [
class_name
for tag in GENERATIVE_PIPELINE_TAGS
for class_name in TASK_MAPPING[tag].values()
]
if class_names is not None and any(
class_name in generative_class_names for class_name in class_names
):
pipeline_tag = "text-generation"
else:
pipeline_tag = "fill-mask"
if benchmark_config.only_allow_safetensors:
# Check if any file ends with .safetensors
repo_files = hf_api.list_repo_files(repo_id=model_id, revision=revision)
has_safetensors = any(f.endswith(".safetensors") for f in repo_files)
if not has_safetensors:
msg = f"Model {model_id} does not have safetensors weights available. "
if benchmark_config.run_with_cli:
msg += "Skipping since the `--only-allow-safetensors` flag is set."
else:
msg += (
"Skipping since the `only_allow_safetensors` argument is set "
"to `True`."
)
raise InvalidModel(msg)
return HFModelInfo(
pipeline_tag=pipeline_tag, tags=tags, adapter_base_model_id=base_model_id
)
def load_tokenizer(
model: "PreTrainedModel | None", model_id: str, trust_remote_code: bool
) -> "PreTrainedTokenizer":
"""Load the tokenizer.
Args:
model:
The model, which is used to determine whether to add a prefix space to
the tokens. Can be None.
model_id:
The model identifier. Used for logging.
trust_remote_code:
Whether to trust remote code.
Returns:
The loaded tokenizer.
"""
loading_kwargs: dict[str, bool | str] = dict(
use_fast=True,
verbose=False,
trust_remote_code=trust_remote_code,
padding_side="right",
truncation_side="right",
)
# If the model is a subclass of a certain model types then we have to add a prefix
# space to the tokens, by the way the model is constructed.
if model is not None:
prefix_models = ["Roberta", "GPT", "Deberta"]
add_prefix = any(
model_type in type(model).__name__ for model_type in prefix_models
)
if add_prefix:
loading_kwargs["add_prefix_space"] = True
num_retries = 5
for _ in range(num_retries):
try:
tokenizer = AutoTokenizer.from_pretrained(model_id, **loading_kwargs)
break
except (JSONDecodeError, OSError, TypeError):
raise InvalidModel(f"Could not load tokenizer for model {model_id!r}.")
except (TimeoutError, RequestError):
logger.info(f"Couldn't load tokenizer for {model_id!r}. Retrying.")
sleep(5)
continue
else:
raise InvalidModel(
f"Could not load tokenizer for model {model_id!r} after {num_retries} "
"attempts."
)
# Ensure that BOS, EOS and PAD tokens are set
tokenizer.bos_token, tokenizer.bos_token_id = get_bos_token(tokenizer=tokenizer)
tokenizer.eos_token, tokenizer.eos_token_id = get_eos_token(tokenizer=tokenizer)
return tokenizer
def get_torch_dtype(
device: torch.device, torch_dtype_is_set: bool, bf16_available: bool
) -> str | torch.dtype:
"""Get the torch dtype, used for loading the model.
Args:
device:
The device to use.
torch_dtype_is_set:
Whether the torch data type is set in the model configuration.
bf16_available:
Whether bfloat16 is available.
Returns:
The torch dtype.
"""
using_cuda = device == torch.device("cuda")
if using_cuda and torch_dtype_is_set:
return "auto"
elif using_cuda and bf16_available:
return torch.bfloat16
elif using_cuda:
return torch.float16
return torch.float32
def load_hf_model_config(
model_id: str,
num_labels: int,
id2label: dict[int, str],
label2id: dict[str, int],
revision: str,
model_cache_dir: str | None,
api_key: str | None,
trust_remote_code: bool,
run_with_cli: bool,
) -> "PretrainedConfig":
"""Load the Hugging Face model configuration.
Args:
model_id:
The Hugging Face model ID.
num_labels:
The number of labels in the dataset.
id2label:
The mapping from label IDs to labels.
label2id:
The mapping from labels to label IDs.
revision:
The revision of the model.
model_cache_dir:
The directory to cache the model in.
api_key:
The Hugging Face API key.
trust_remote_code:
Whether to trust remote code.
run_with_cli:
Whether the script is being run with the CLI.
Returns:
The Hugging Face model configuration.
"""
while True:
try:
config = AutoConfig.from_pretrained(
model_id,
num_labels=num_labels,
id2label=id2label,
label2id=label2id,
revision=revision,
token=api_key or os.getenv("HUGGINGFACE_API_KEY") or True,
trust_remote_code=trust_remote_code,
cache_dir=model_cache_dir,
)
if config.eos_token_id is not None and config.pad_token_id is None:
if isinstance(config.eos_token_id, list):
config.pad_token_id = config.eos_token_id[0]
else:
config.pad_token_id = config.eos_token_id
return config
except KeyError as e:
key = e.args[0]
raise InvalidModel(
f"The model config for the model {model_id!r} could not be "
f"loaded, as the key {key!r} was not found in the config."
)
except (OSError, GatedRepoError) as e:
# TEMP: When the model is gated then we cannot set cache dir, for some
# reason (since transformers v4.38.2, still a problem in v4.48.0). This
# should be included back in when this is fixed.
if "gated repo" in str(e):
model_cache_dir = None
continue
raise InvalidModel(
f"Couldn't load model config for {model_id!r}. The error was "
f"{e!r}. Skipping"
)
except (TimeoutError, RequestError):
logger.info(f"Couldn't load model config for {model_id!r}. Retrying.")
sleep(5)
continue
except ValueError as e:
if "awaiting a review from the repo authors" in str(e):
raise InvalidModel(
f"The model {model_id!r} is awaiting a review from the repository "
"authors. Please try again later."
)
if "trust_remote_code" in str(e):
raise NeedsAdditionalArgument(
cli_argument="--trust-remote-code",
script_argument="trust_remote_code=True",
run_with_cli=run_with_cli,
)
raise InvalidModel(
f"The config for the model {model_id!r} could not be loaded. The "
f"error was {e!r}."
)
def setup_model_for_question_answering(model: "PreTrainedModel") -> "PreTrainedModel":
"""Setup a model for question answering.
Args:
model:
The model to setup.
Returns:
The setup model.
"""
# Get the models' token type embedding children, if they exist
children = get_children_of_module(name="model", module=model)
# If the model has token type embeddings then get them
if children:
# Get the list of attributes that are token type embeddings
attribute_list = list()
done = False
while not done:
for key, value in children.items():
attribute_list.append(key)
if isinstance(value, dict):
children = value
else:
done = True
break
# Get the token type embeddings
token_type_embeddings = model
for attribute in attribute_list:
token_type_embeddings = getattr(token_type_embeddings, attribute)
# If the token type embeddings has shape (1, ...) then set the shape to
# (2, ...) by randomly initializing the second token type embedding
if token_type_embeddings.weight.data.shape[0] == 1:
token_type_embeddings.weight.data = torch.cat(
(
token_type_embeddings.weight.data,
torch.rand_like(token_type_embeddings.weight.data),
),
dim=0,
)
token_type_embeddings.num_embeddings = 2
# Set the model config to use the new type vocab size
model.config.type_vocab_size = 2
return model
def get_children_of_module(
name: str, module: nn.Module
) -> nn.Module | dict[str, t.Any] | None:
"""Get the children of a module.
Args:
name:
The name of the module.
module:
The module to get the children of.
Returns:
The children of the module, or None if the module has no children.
"""
if len(list(module.children())) == 0:
if name == "token_type_embeddings":
return module
else:
return None
else:
submodules = dict()
for subname, submodule in module.named_children():
children = get_children_of_module(name=subname, module=submodule)
if children:
submodules[subname] = children
return submodules
def align_model_and_tokenizer(
model: "PreTrainedModel",
tokenizer: "PreTrainedTokenizer",
model_max_length: int,
raise_errors: bool = False,
) -> tuple["PreTrainedModel", "PreTrainedTokenizer"]:
"""Aligns the model and the tokenizer.
Args:
model:
The model to fix.
tokenizer:
The tokenizer to fix.
model_max_length:
The maximum length of the model.
raise_errors:
Whether to raise errors instead of trying to fix them silently.
Returns:
The fixed model and tokenizer.
"""
# Ensure that the model max length is at most 5,000, to avoid OOM errors
model_max_length = min(model_max_length, 5_000)
if model_max_length > 0:
tokenizer.model_max_length = model_max_length
else:
tokenizer.model_max_length = 512
# Move the model to the CPU, since otherwise we can't catch the IndexErrors when
# finding the maximum sequence length of the model
model_device = model.device
model.to(torch.device("cpu"))
# Manually check that this model max length is valid for the model, and adjust
# otherwise
initial_max_length = tokenizer.model_max_length
for max_length in range(initial_max_length, 0, -1):
tokenizer.model_max_length = max_length
dummy_inputs = torch.full(
size=(1, max_length),
fill_value=DUMMY_FILL_VALUE,
dtype=torch.long,
device=model.device,
)
with torch.inference_mode():
try:
model(dummy_inputs, attention_mask=torch.ones_like(dummy_inputs))
break
# This happens if `max_length` is too large
except IndexError:
continue
# Move the model back to the original device
model.to(model_device)
# If there is a mismatch between the vocab size according to the tokenizer and
# the vocab size according to the model, we raise an error
if hasattr(model.config, "vocab_size"):
if model.config.vocab_size < len(tokenizer):
if raise_errors:
raise InvalidModel(
"The vocab size of the tokenizer is larger than the vocab size of "
"the model. As the --raise-errors option was specified, the "
"embeddings of the model will not be automatically adjusted."
)
if hasattr(model, "resize_token_embeddings"):
model.resize_token_embeddings(new_num_tokens=tokenizer.vocab_size + 1)
if tokenizer.bos_token is None and tokenizer.eos_token is not None:
tokenizer.bos_token = tokenizer.eos_token
tokenizer.bos_token_id = tokenizer.eos_token_id
return model, tokenizer
def task_group_to_class_name(task_group: TaskGroup) -> str:
"""Convert a task group to a class name.
Args:
task_group:
The task group.
Returns:
The class name.
"""
pascal_case = task_group.title().replace("_", "")
special_case_mapping = dict(
MultipleChoiceClassification="SequenceClassification",
Speed="SequenceClassification",
)
pascal_case = special_case_mapping.get(pascal_case, pascal_case)
return f"AutoModelFor{pascal_case}"
|