Skip to content

euroeval.benchmarker

source module euroeval.benchmarker

Class that benchmarks language models.

Classes

  • Benchmarker Benchmarking all the language models.

Functions

source class Benchmarker(progress_bar: bool = True, save_results: bool = True, task: str | list[str] | None = None, dataset: list[str] | str | None = None, language: str | list[str] = 'all', model_language: str | list[str] | None = None, dataset_language: str | list[str] | None = None, device: Device | None = None, batch_size: int = 32, raise_errors: bool = False, cache_dir: str = '.euroeval_cache', api_key: str | None = None, force: bool = False, verbose: bool = False, trust_remote_code: bool = False, clear_model_cache: bool = False, evaluate_test_split: bool = False, few_shot: bool = True, num_iterations: int = 10, api_base: str | None = None, api_version: str | None = None, debug: bool = False, run_with_cli: bool = False, only_allow_safetensors: bool = False)

Benchmarking all the language models.

Initialise the benchmarker.

Attributes

  • benchmark_config_default_params The default parameters for the benchmark configuration.

  • benchmark_config The benchmark configuration.

  • force Whether to force evaluations of models, even if they have been benchmarked already.

  • results_path The path to the results file.

  • benchmark_results : list[BenchmarkResult] The benchmark results.

Parameters

  • progress_bar : bool Whether progress bars should be shown. Defaults to True.

  • save_results : bool Whether to save the benchmark results to 'euroeval_benchmark_results.jsonl'. Defaults to True.

  • task : str | list[str] | None The tasks benchmark the model(s) on. Mutually exclusive with dataset. If both task and dataset are None then all datasets will be benchmarked.

  • dataset : list[str] | str | None The datasets to benchmark on. Mutually exclusive with task. If both task and dataset are None then all datasets will be benchmarked.

  • language : str | list[str] The language codes of the languages to include, both for models and datasets. Set this to 'all' if all languages should be considered. Defaults to "all".

  • model_language : str | list[str] | None The language codes of the languages to include for models. If specified then this overrides the language parameter for model languages. Defaults to None.

  • dataset_language : str | list[str] | None The language codes of the languages to include for datasets. If specified then this overrides the language parameter for dataset languages. Defaults to None.

  • device : Device | None The device to use for benchmarking. Defaults to None.

  • batch_size : int The batch size to use. Defaults to 32.

  • raise_errors : bool Whether to raise errors instead of skipping the model evaluation. Defaults to False.

  • cache_dir : str Directory to store cached models. Defaults to '.euroeval_cache'.

  • api_key : str | None The API key to use for a given inference API.

  • force : bool Whether to force evaluations of models, even if they have been benchmarked already. Defaults to False.

  • verbose : bool Whether to output additional output. This is automatically set if debug is True. Defaults to False.

  • trust_remote_code : bool Whether to trust remote code when loading models. Defaults to False.

  • clear_model_cache : bool Whether to clear the model cache after benchmarking each model. Defaults to False.

  • evaluate_test_split : bool Whether to evaluate the test split of the datasets. Defaults to False.

  • few_shot : bool Whether to only evaluate the model using few-shot evaluation. Only relevant if the model is generative. Defaults to True.

  • num_iterations : int The number of times each model should be evaluated. This is only meant to be used for power users, and scores will not be allowed on the leaderboards if this is changed. Defaults to 10.

  • api_base : str | None The base URL for a given inference API. Only relevant if model refers to a model on an inference API. Defaults to None.

  • api_version : str | None The version of the API to use. Defaults to None.

  • debug : bool Whether to output debug information. Defaults to False.

  • run_with_cli : bool Whether the benchmarker is being run from the command-line interface. Defaults to False.

  • only_allow_safetensors : bool Whether to only allow models that use the safetensors format. Defaults to False.

Raises

  • ValueError If both task and dataset are specified.

Methods

  • benchmark Benchmarks models on datasets.

source property Benchmarker.benchmark_results: list[BenchmarkResult]

The benchmark results.

source method Benchmarker.benchmark(model: list[str] | str, task: str | list[str] | None = None, dataset: list[str] | str | None = None, progress_bar: bool | None = None, save_results: bool | None = None, language: str | list[str] | None = None, model_language: str | list[str] | None = None, dataset_language: str | list[str] | None = None, device: Device | None = None, batch_size: int | None = None, raise_errors: bool | None = None, cache_dir: str | None = None, api_key: str | None = None, force: bool | None = None, verbose: bool | None = None, trust_remote_code: bool | None = None, clear_model_cache: bool | None = None, evaluate_test_split: bool | None = None, few_shot: bool | None = None, num_iterations: int | None = None, only_allow_safetensors: bool | None = None)list[BenchmarkResult]

Benchmarks models on datasets.

Parameters

  • model : list[str] | str The full Hugging Face Hub path(s) to the pretrained transformer model. The specific model version to use can be added after the suffix '@': "model@v1.0.0". It can be a branch name, a tag name, or a commit id, and defaults to the latest version if not specified.

  • task : str | list[str] | None The tasks benchmark the model(s) on. Mutually exclusive with dataset. If both task and dataset are None then all datasets will be benchmarked. Defaults to None.

  • dataset : list[str] | str | None The datasets to benchmark on. Mutually exclusive with task. If both task and dataset are None then all datasets will be benchmarked. Defaults to None.

  • progress_bar : bool | None Whether progress bars should be shown. Defaults to the value specified when initialising the benchmarker.

  • save_results : bool | None Whether to save the benchmark results to 'euroeval_benchmark_results.jsonl'. Defaults to the value specified when initialising the benchmarker.

  • language : str | list[str] | None The language codes of the languages to include, both for models and datasets. Here 'no' means both Bokmål (nb) and Nynorsk (nn). Set this to 'all' if all languages should be considered. Defaults to the value specified when initialising the benchmarker.

  • model_language : str | list[str] | None The language codes of the languages to include for models. If specified then this overrides the language parameter for model languages. Defaults to the value specified when initialising the benchmarker.

  • dataset_language : str | list[str] | None The language codes of the languages to include for datasets. If specified then this overrides the language parameter for dataset languages. Defaults to the value specified when initialising the benchmarker.

  • device : Device | None The device to use for benchmarking. Defaults to the value specified when initialising the benchmarker.

  • batch_size : int | None The batch size to use. Defaults to the value specified when initialising the benchmarker.

  • raise_errors : bool | None Whether to raise errors instead of skipping the model evaluation.

  • cache_dir : str | None Directory to store cached models. Defaults to the value specified when initialising the benchmarker.

  • api_key : str | None The API key to use for a given inference server. Defaults to the value specified when initialising the benchmarker.

  • force : bool | None Whether to force evaluations of models, even if they have been benchmarked already. Defaults to the value specified when initialising the benchmarker.

  • verbose : bool | None Whether to output additional output. Defaults to the value specified when initialising the benchmarker.

  • trust_remote_code : bool | None Whether to trust remote code when loading models. Defaults to the value specified when initialising the benchmarker.

  • clear_model_cache : bool | None Whether to clear the model cache after benchmarking each model. Defaults to the value specified when initialising the benchmarker.

  • evaluate_test_split : bool | None Whether to evaluate the test split of the datasets. Defaults to the value specified when initialising the benchmarker.

  • few_shot : bool | None Whether to only evaluate the model using few-shot evaluation. Only relevant if the model is generative. Defaults to the value specified when initialising the benchmarker.

  • num_iterations : int | None The number of times each model should be evaluated. This is only meant to be used for power users, and scores will not be allowed on the leaderboards if this is changed. Defaults to the value specified when initialising the benchmarker.

  • only_allow_safetensors : bool | None Whether to only allow models that use the safetensors format. Defaults to the value specified when initialising the benchmarker.

Returns

Raises

  • ValueError If both task and dataset are specified.

  • benchmark_output_or_err

  • e

source model_has_been_benchmarked(model_id: str, dataset: str, few_shot: bool, validation_split: bool, benchmark_results: list[BenchmarkResult])bool

Checks whether a model has already been benchmarked on a dataset.

Parameters

  • model_id : str The model ID.

  • dataset : str The dataset.

  • few_shot : bool Whether the model was evaluated using few-shot evaluation.

  • validation_split : bool Whether the model was evaluated on the validation split.

  • benchmark_results : list[BenchmarkResult] The benchmark results.

Returns

  • bool Whether the model has already been evaluated on the dataset.

source adjust_logging_level(verbose: bool, ignore_testing: bool = False)int

Adjust the logging level based on verbosity.

Parameters

  • verbose : bool Whether to output additional output.

  • ignore_testing : bool Whether to ignore the testing flag.

Returns

  • int The logging level that was set.

source clear_model_cache_fn(cache_dir: str)None

Clear the model cache.

Note that this will not remove the stored completions.

Parameters

  • cache_dir : str The path to the cache directory.

source prepare_dataset_configs(dataset_names: list[str])list['DatasetConfig']

Prepare the dataset configuration(s) to be benchmarked.

Parameters

  • dataset_names : list[str] The dataset names to benchmark.

Returns

  • list['DatasetConfig'] The prepared list of model IDs.

source initial_logging(model_config: ModelConfig, dataset_config: DatasetConfig, benchmark_config: BenchmarkConfig)None

Initial logging at the start of the benchmarking process.

Parameters

  • model_config : ModelConfig The configuration of the model we are evaluating.

  • dataset_config : DatasetConfig The configuration of the dataset we are evaluating on.

  • benchmark_config : BenchmarkConfig The general benchmark configuration.